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Abstract:

Aims:

Digital retinal images are commonly used for hard exudates and lesion detection. These images are rarely noiseless and therefore before any further
processing they should be underwent noise removal.

Background:

An efficient segmentation method is then needed to detect and discern the lesions from the retinal area.

Objective:

In this paper, a hybrid method is presented for digital retinal image processing for diagnosis and screening purposes. The aim of this study is to
present  a  supervised/semi-supervised  approach  for  exudate  detection  in  fundus  images  and  also  to  analyze  the  method  to  find  the  optimum
structure.

Methods:

Ripplet transform and cycle spinning method is first used to remove the noises and artifacts.

Results:

The noises may be normal or any other commonly occurring forms such as salt and pepper. The image is transformed into fuzzy domain after it is
denoised.

Conclusion:

A cellular learning automata model is used to detect any abnormality on the image which is related to a lesion. The automaton is created with an
extra term as the rule updating term to improve the adaptability and efficiency of the cellular automata.Three main statistical criteria are introduced
as the sensitivity, specificity and accuracy. A number of 50 retinal images with visually detection hard exudates and lesions are the experimental
dataset for evaluation and validation of the method.

Keywords: Digital retinal images, Hard exudates and lesions detection, Denoising, Fuzzification concept, Cellular Learning Automata, Statistical
evaluation parameters, Ripplet transform.
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1. INTRODUCTION

In  ophthalmology,  the  automatic  detection  of  blood  ves-
sels, as well as the detection of the optic disc, may be of consi-
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derable interest in computer assisted diagnosis. Detecting and
counting lesions, in the human retina such as micro-aneurysms
and exudates,  is  a  time-consuming task for  ophthalmologists
and  open  to  human  error.  That  is  why  much  effort  has  been
made to detect lesions in the human retina automatically [1].
Diabetic Retinopathy (DR) is a visual complication of diabetes,
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which  has  become  the  most  common  cause  of  visual
impairment and new-onset blindness among people of working
age in industrialized countries [2, 3]. Due to its prevalence and
clinical significance, the research community has attempted to
improve its diagnosis and treatment by developing algorithms
to  perform  retinal  image  analysis  [4],  fundus  image
enhancement [5], and monitoring [6]. Of special significance
are  automatic  image  analysis  algorithms  designed  to  detect
Hard Exudates (HEs) [7]. HEs have been found to be the most
specific markers for the presence of retinal oedema, the major
cause  of  visual  loss  in  non-proliferative  forms  of  DR  [2].
Additionally, HEs are one of the most prevalent lesions during
the early stages of DR [2].

In many applications, image denoising is a tool by which a
good  estimate  of  the  original  image  from  noisy  states  is
provided.  An  ideal  image  denoising  technique  makes  it
possible  to  eliminate  as  much  random  additive  noise  as
possible while maintaining key image characteristics, such as
edges and texture. Among the many methods proposed for this
purpose, i.e.  image denoising, due to their high ability in the
sparse representation of signals, transform based methods (e.g.,
wavelets) [8] are dominant in this application.

Automatic  algorithms  for  HE detection  are  required  in  a
variety of applications, including the design of complete sys-
tems for automatic processing of retinal images. Several tech-
niques have been developed for HE detection in fundus images
based on a variety of techniques [7]. These techniques include
the usage of  image contrast  and brightness  analysis  [9 -  15],
Bayesian classifiers [16, 17], and neural networks [18, 19].

Zhang  et  al.  [20]  used  local  contrast  enhancement  and
Fuzzy  C-means  Clustering  (FCMC)  in  Luv  color  space  to
segment  candidate  bright  exudates  areas.  However,  the  main
difficulty with FCMC is determining the number of clusters to
use. Walter et al. [21] applied mathematical reconstruction to
detect  contours  typical  of  exudates.  This  technique  achieved
predictive and sensitivity values of 92.4% and 92.8% with a set
of 15 abnormal retinal images. However, this technique did not
discriminate exudates from cotton wool spots.  Gardner et al.
[22]  used  the  backpropagation  neural  network  for  the
segmentation  of  exudates.  Comparing  the  results  of  this
method with  those  of  an expert  ophthalmologist,  the  method
achieved  a  sensitivity  and  specificity  of  88.4%  and  83.5%,
respectively, for the detection of exudates. A drawback of this
method was that it did not work well on poor quality images.

Most  of  the  previous  techniques  have  based  on  retinal
features being clearly visible on acquired imagery. Acquiring
clearly  visible  retinal  features  takes  time  and  it  is
uncomfortable for patients. Moreover, sometimes, there are a
number of exudates with different sizes apart or stuck, which
require a model-based method for detection. Therefore, in this
paper,  the  cellular  learning  automata  in  the  fuzzy  domain  is
used  for  automated  and  accurate  detection  of  exudates   on  
retinal images. The ultimate aim was to develop an application
for  automatic  detection  of  exudates,  to  provide  decision
support and to reduce workloads for expert ophthalmologists
by a supervised method, which can also act as an automation
system.

Cellular Automata (CA) consist of a regular grid of cells,
each of which can be in only one of a finite number of possible
states. The state of a cell is determined by the previous states of
a  surrounding  neighborhood  of  the  cells  and  is  updated
synchronously  in  discrete  time  steps.  The  identical  rule
contained  in  each  cell  is  essentially  a  finite  state  machine,
usually specified in the form of a rule table with an entry for
every possible neighborhood configuration of states. Cellular
automata are discrete dynamical systems, and they have been
found useful for simulating and studying phenomena such as
ordering, turbulence, chaos, symmetry-breaking, etc., and have
had  wide  application  in  modeling  systems  in  areas  such  as
physics, biology and sociology. One of the advantages of CAs
is that, although each cell generally only contains a few simple
rules,  the  combination  of  a  matrix  of  cells  with  their  local
interaction  leads  to  more  sophisticated  emergent  global
behavior. That is, although each cell has an extremely limited
view  of  the  system  (just  its  immediate  neighbors),  localized
information  is  propagated  at  each  time  step,  enabling  more
global characteristics of the overall CA system [23].

In  this  paper,  a  denoising  method  based  on  ripplet
transform  is  first  presented.  Fuzzified  cellular  learning
automata are then introduced for the segmentation of denoised
retinal images. A retinal image dataset consisting of 50 retinal
images  with  hard  exudates  is  used  to  assess  the  proposed
method. The paper is organized as follows: Section 2 presents
the dataset and the methodology results are given in Section 3
and  in  Section  4,  the  results  are  discussed.  Finally,  some
conclusions  are  drawn  in  Section  5.

2. MATERIALS AND METHODS

2.1. Image Database

The  main  dataset  was  a  subset  of  the  STARE  Project’s
dataset  [27].  The  subset  contained  81  retinal  images  for
evaluating  the  proposed  exudates  detection  method.  The
images were captured using a TopCon TRV-50 fundus camera
at 35º field-of-view (FOV), and subsequently digitized at 605 ×
700, 24-bits pixel. The dataset was used for both the evaluation
of  the  proposed  method  and  also  comparison  to  some  other
methods.  The  dataset  consisted  of  a  total  of  50  color  retinal
images  which  were  taken  without  pupil  dilation  with  a
KOWA-7 non-mydriatic retinal camera with a 45º FOV. The
image  size  was  768×576  pixels  at  24  bits  per  pixel  in  RGB
format. All retinal images analyses were performed on a Core2
Duo  2.2  GHz  Laptop  using  MATLAB  7.6.0  for  all
implementations.

2.2. Denoising Digital Retinal Images

The processing of digital retinal images is only possible by
the discrete form of the transform methods. Hence, the discrete
form of ripplet transform is applied to digital retinal images for
denoising  purposes.  Analogously  to  the  discrete  curvelet
transform, the discretization of continuous ripplet transform is
based  on  the  discretization  of  the  parameters  of  ripplets,  i.e.

 To  this  end,  a  is  sampled  at  the  dyadic  interval
while the position parameter  and the rotation parameter 
are sampled at the equal-spaced intervals. The discrete versions
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of   are  denoted  by   which  satisfy  that,
(Eq.1)

(1)

in which (Eq.2)

(2)

and operator T denotes the transpose of a vector, 
(usually  m  and  n  are  both  primes),

 [8]. Therefore, the frequency response
of discrete ripplet function can be represented as, (Eq.3)

(3)

In  which  W  and  V  satisfy  the  following  admissibility
condition  (Eqs.4  and  5):

(4)

(5)

In  the  frequency  domain,  the  ‘wedge’  of  the  ripplet
function  can  be  represented  as  (Eq.6):

(6)

Finally, for an arbitrary image  with size  the
discrete ripplet coefficients will be in the form of (Eq.7):

(7)

The image can be reconstructed from the coefficients 
through inverse discrete ripplet transform (Eq.8):

(8)

In the shift variant transforms such as ripplet transform, the
pseudo-Gibbs phenomenon results in appearing artifacts in the
singularities around the edges of the reconstructed image. To
alleviate  these  artificial  edges,  traditional  methods  use  a
strategy in which the image is shifted to change the position of
the discontinuity point [8]. After processing (denoising in our
case)  shifted  image,  the  inverse  shifting  was  applied  to  the
shifted image.

Assume  be  the  noisy  image,  be  the
estimation of  noise-free image,  R and R-1 denote  the ripplet
transform and the inverse ripplet transform, respectively, dx,y

and is  the  shift  distance  along the  horizontal  direction x  and
vertical  direction  y,  respectively  [13].  Thus,  if  the  image  is
shifted with a certain distance, dx,y the denoising strategy using
the cycle spinning method can be expressed as follows (Eq.9).

(9)

where  denoising is  the  process  described in  the  previous
section.  However,  this  strategy  works,  when  the  number  of
discontinuous  points  in  an  image  is  small,  whereas  the  shift
may  cause  serious  pseudo-Gibbs  phenomenon  in  the  area  of
other discontinuous points. Therefore, it is hard to find a proper
shift distance which can cope with all of discontinuous points
in the image. Thus, the cycle spinning method is proposed to
tackle this problem in denoising of images.

(10)

2.3. Transformation of Retinal Images into Fuzzy Domain

(11)

To enhance the gray levels across the edges and to improve
the  contrast  of  the  image,  gray  levels  of  the  pixels  are
normalized  to  unit  interval  [0,1]  corresponding  to  the  whole
gray  level  range  [0,255].  The  primary  motion  matrix  is
obtained  by  the  calculation  of   function  over  
neighborhood windows around all pixels as (Eqs.12-14),

𝑎𝑗, 𝑏𝑘
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Given   which  indicate  a  set  of  shift
arranges   in  vertical  direction  and

 in horizontal direction, and considering
that  all  the  x  and  y  should  be  less  than  the  columns  and  the
rows of the image, respectively, averaging the denoised image
after a series of the cycle spinning, gives the denoised image in
which  the  pseudo-Gibbs  phenomenon  is  alleviated.  The
denoising method utilizing the cycle spinning can be described
by the following formula (Eq.10).

Let  us consider an image of size  pixels,  having L
gray  levels  g  ranging  from  0  to  L  -  1.  The  image   can  be
viewed as an array of fuzzy singletons [19]. Each element of
the array is the membership value  of the gray level

,  corresponding  to  the   pixel,  regarding  an  image
property such as brightness, edginess, homogeneity, etc. Using
the fuzzy sets notation image  can be represented as (Eq.11):

1
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[minimum,maximum] range as, (Eq.15),

(15)

2.4. Retinal Image Fuzzy Automaton

A  retinal  image  fuzzy  automaton  in  the  Fuzzy  Cellular
Learning Automata is created as, (Eq.16)

States in the automaton correspond to decision variables of
the problem. The rules are set as transition functions (Eq.17):

applied can be logically expressed as (Eq.18):

conditional term of the above equation is similar to searching
within  a  look-up  table,  which  comprises  a  set  of  predefined
state  rules.  Threshold   selection  directly  specifies  the
sensitivity to the rules selection and to the state changes. Very
low  values lead to significant score assignments and it may
result  in  enlarging  the  state  values  and  also  vice  versa.
Therefore, this parameter can be justified in each time interval

(12)

where

(13)

and

(14)

Matrix  is obtained as the primary motion detected in 
image of the image set . Parameter  is the threshold value
for  motion  detection  in  corresponding   neighborhood
windows  in  image  sequence   and  .  Coefficient

 means  the  first  order  absolute  gradient  of  the  sequent
images   depicts the first order gradient
of  the  image  relative  to  the  average  of  the  previous  images

 Multiplication of the two terms in Eq. (2) guarantees
both of these statements: (a) difference with the previous image
implies motion and (b) slight differences with the average of
images  represent  vibration  and  undesired  motions  (e.g.,
shadows,  camera  shaking  or  local  illumination  variations).

The  matrix   undergoes  normalization  in  the

(15)

Therefore  matrix   is  normalized  to  the  range  [0,255].
Eq. (5) also represents a defuzzification formula though some
elements  of  the  matrix  are  out  of  the  unit  interval.  Now,
Cellular  Learning  Automata  is  used  to  detect  the  object  of
interest  in  the  primary  motion  matrix   which  has  been
converted to grayscale image format.
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where   is  the  transition  function,
 correspond  to  the  current  state  and

the  next  state,   are  the  score  and  penalty  values,
respectively,  is the set of rules and the term

 implies  the  conditional  rule  applying.  The
condition under which the appropriate rule is selected and then
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(18)

where   is  the  accordance  factor  for  the  ith  rule.  The



Nejad et al.

reported  and  calculated  as  follows  (Eqs.20-22):

where  the  abbreviations  and  their  meanings  are
summarized  in  Table  1.  The  sensitivity  results  describe  the
percentage of correctly detected object’s pixels. The specificity
result demonstrates the percentage of incorrect assignments of
the  pixels  and  the  accuracy  shows  the  validity  of  the
assignments. The higher accuracy percentage reveals the higher
veracity of results.

3. SIMULATION RESULTS

A  number  of  50  retinal  images  with  hard  exudates  and
lesion  detected  visually  are  considered  as  the  dataset  to
evaluate the proposed segmentation method. Implementations
of the proposed method were done in MATLAB software using
an  image  processing  toolbox.  All  codes  were  developed  in
MATLAB M-files, while a set of the images is copied in the
same  directory  as  the  M-file.  The  program  consists  of  four
main  parts:  denoising  step,  initialization  part,  segmentation
method and image binarization and assessment part.

In our experiments, we first evaluated the methods to find
the optimum parameter values and the most suitable structure.
Then,  the  results  of  the  retina  exudates  detection  for  the
proposed  method  are  compared  to  the  results  of  some  other
methods in recent literature. All detections were executed for
lesion  based  images  with  no  limitations  in  the  number  and
regions  of  the  lesions.  A  lesion  is  considered  a  true  positive
(TP) if it overlaps at least in part with the ground-truth; a false
negative  (FN)  if  no  corresponding  lesion  is  found  in  the
automatic segmentation; a false positive (FP) if an exudate is
found  in  the  automatic  segmentation,  but  no  corresponding
lesion has been manually segmented. In the evaluation of the
segmentation, true negatives (TN) are the true assignments to
the non-lesion regions.

Table 1. The abbreviations used in formula (20), (21) and
(22).

Abbreviation Stands for Description
TP True Positive Pixels correctly detected as an object
FP False Positive Pixels incorrectly marked as an object
TN True Negative Pixels correctly marked as background
FN False Negative Pixels incorrectly labeled as backgrou-

nd

In the first part of the experiments, the effects of the score
and penalty values for two iteration values were studied.  All
runs  have been done for  two neighborhood sizes  of  3×3 and
5×5. Samples of the original retinal images with hard exudates
are  shown  in  (Figs.  1-3)  show  noisy  images  and  the  images
denoised  by  the  ripplet  transform-based  denoising  method
presented in this paper. Segmented images of retinal images are
shown  in  Fig.  (4).  The  images  in  Fig.  (4)  correspond  to  the
implementation  of  the  proposed  method  with  a  marginally
optimum set  of  parameters,  while  their  numerical  results  are
given in Table 2. The results of statistical analysis on the score
and  penalty  assignments  are  given  in  Table  2  while  the
proposed  method  is  used  with  and  without  the  denoising
process. It is shown that the optimum score and penalty values
stand about 0.01 and 0.02 while the product of score/penalty
values and the number of iterations is important. The denoising
process improves the statistical parameters of about 4-6%. It is
also shown that for our dataset images, the neighborhood size
of  5×5  which  is  an  extended  Moore  neighborhood,  leads  to
better results as compared to the simple Moore neighborhood.

Table 3  shows the results  of a brief comparison between
the  Fuzzy  cellular  automata  and  fuzzy  cellular  learning
automata. For this part of the experiment, the rules are updated
for two values of . Parameter  affects the rate of score

(19)

where   is  the  updating  additive  value  ranged  between
0.001 and 0.1. Parameter  is the ratio of state overall variation
in  three  sequent  cycles  in  cellular  automata  and   is  a
threshold value for . For simplicity . can be initially set as
0.6 and  is randomly selected in the unit interval [0,1]. Eq.
(3)  makes  the  threshold  value   larger  if  the  rule  selection
sensitivity  and  the  score  assignment  raise  significantly  since
larger  values limit the score assignments (and vice versa ).
The  evolution  cycle  of  the  Cellular  Learning Automata  goes
forward  according  to  the  learning  rule.  Score  and  penalty
parameters  can  also  be  updated  in  each  cycle  but  they  are
preferred  to  be  set  as  low  as  possible  initially  and  the
convergence to be reached in a long time. Applying appropriate
learning functions to the rules will guarantee the convergence
and goal tracing capability of the model.

2.5. Segmentation of Retinal Images

For  lesion  detection  in  retinal  images,  a  binary  image
comprising two segments of the healthy area of the retina as
background  and  the  detected  lesion(s)  as the  foreground  is
desired.  Therefore,  since after  the cycle ,  the resulting
image  is  in  the  fuzzy  domain  and  its  pixels  are  in the  unit
interval,  a non-sensitive threshold  ranged between 0.1 and
0.9 is selected to produce a binary image  as:

2.6. Segmentation Quantitative Criteria

To  report  the  performance  of  the  classifier,  the  three
common  criteria  sensitivity,  specificity  and  accuracy  are

(20)

(21)

(22)

�̅�
�̅�

�̅� & 𝜎 �̅� 

of  the  cellular  automata  and this  updating  process  leads  to  a
learning scheme. Threshold value  is updated in each cycle
according to this formula (Eq.19):

𝑓𝑜𝑟 𝑎𝑙𝑙 (𝑥, �̂�) ∈ 𝑆𝑡(. )  

𝑖𝑓 𝑆𝑡(𝑥, �̂�) ≥ 𝜍 → 𝐼𝑏(𝑥, �̂�) = 1  

𝑒𝑠𝑙𝑒 𝐼𝑏(�̂�, �̂�) = 0  

𝑒𝑛𝑑𝑖𝑓  

𝑒𝑛𝑑𝑓𝑜𝑟     
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assignment and  determines the threshold for rule selection.
Optimum  values  for   are  found  as

 Different similarity thresholds for rule
selection from 0.5 to 0.95 are used to figure out the detected
exudates and it has been shown that low threshold values result
in enlarged detected regions and vice versa . It happens because
low threshold values cause higher rates  of  rule selection and
applying  rules  relates  to  the  score  assignment  and  exudates
configuration. The similarity threshold value 
equally for all rules has been found optimum.

The final state of the FCLA iterative method gives out a
retina image with segmented exudates. Based on the number of
iterations, defined rules and the values of score and penalty, the
final state may be an image in the fuzzy domain and its pixels
ranged in  the  unit  interval.  Hence,  a  threshold  parameter  for
image  binarization   is  proposed  to  assign  the  pixels  of  the
images  either  0  or  1  according  to  their  fuzzy  value.  If

Fig. (1). Original Retinal Images with hard exudates.

𝜌~0.8 − 0.85 

𝜎

�̅� = 0.5 & 𝜎 = 0.02. 
�̅� & 𝜎  

appropriate rules are defined and suitable values for 

are  set,  the  sensitivity  to  parameter   is  too  low.  Then  the

values  in  the  range  [0.3,  0.9]  will  lead  to  slightly  different

binary  images.  The  differences  between  the  statistical

parameters for three different values of  are demonstrated in

Table 4.

Comparison to some other methods is performed in terms

of the statistical parameters. To evaluate the efficiency of the

proposed  FCLA  method,  the  results  of  the  six  methods  of

references [15, 19 - 22], K-Nearest Neighbor method are listed

in  Table  5.  The results  for  the  proposed method are  attained

with  the  optimum  parameters  found  in  the  previous

 parts  of  the experiment.  These  parameters  are

 It  is  seen  that  the  proposed  method

with its optimum parameters can detect the exudates in retina

images accurately with high sensitivity and specificity.
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Fig.(2). Noisy Retinal Images with hard exudates (salt and pepper noise).

Fig. (3). Denoised Retinal Images by cycle spinning and ripplet transform.
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Fig. (4). Segmented Retinal Images by the FCLA after the denoising process while .

Table 2. Statistical parameters for exudates detection process by the proposed method with and without denoising process.

( =50) averaged over 50 images.
Without denoising With denoising

Sensitivity 3×3 ~84% ~90% ~94% ~91% ~88% ~92% ~96% ~92%
5×5 ~89% ~95% ~92% ~92% ~91% ~96% ~97% ~93%

Specificity 3×3 ~95% ~97% ~99% ~98% ~96% ~97% ~99% ~98%
5×5 ~97% ~99% ~99% ~98% ~98% ~99% ~99% ~98%

Accuracy 3×3 ~88% ~92% ~94% ~94% ~89% ~94% ~96% ~95%
5×5 ~92% ~94% ~96% ~92% ~92% ~95% ~97% ~92%

Average 3×3 ~89% ~93% ~95.7% ~94.3% ~91% ~94.3% ~97% ~95%
5×5 ~92.7% ~96% ~95.7% ~94% ~93.7% ~96.7% ~97.7% ~94.3%

Table 3. Statistical parameters for exudates detection process by the proposed FCLA method for different rule updating
parameters when 

Updating Rules with Default 

Fixed Rules

Sensitivity ~83% ~88% ~88% ~84% ~90% ~83%
Specificity ~92% ~97% ~91% ~93% ~87% ~96%
Accuracy ~84% ~89% ~83% ~87% ~81% ~81%
Average ~86.3% ~91.3% ~87.3% ~88% ~86% ~86.7%
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Table 4. Statistical parameters for exudates detection process by the proposed FCLA method for different threshold values of
image binarization when 

τ=30 τ=60 τ=90
ς=0.3 ς=0.6 ς=0.9 ς=0.3 ς=0.6 ς=0.9 ς=0.3 ς=0.6 ς=0.9

Sensitivity ~85% ~88% ~87% ~87% ~91% ~91% ~95% ~99% ~97%
Specificity ~96% ~97% ~94% ~98% ~99% ~99% ~99% ~99.9% ~99.6%
Accuracy ~87% ~91% ~89% ~89% ~95% ~94% ~97% ~99% ~98%
Average ~89.3% ~92% ~90% ~91.3% ~95% ~94.7% ~97% ~99.3% ~98.2%

Table 5. Statistical parameters for exudates detection process by the proposed FCLA method compared to some other recent
methods. For the FCLA method 

Method NI/NIEx Sensitivity Specificity Accuracy
Zhang et al. [20] SVM 213/213 88% 84% -
Wang et al. [17] SVM 154/54 100% 71% -

Osareh [24] FCMC 300/300 96% 94.6% -
Garcia et al. [25] MLP 50/25 84% 62.7% -

Wisaeng et al. [26] SVM 120/98 94% 89.52% -
KNN KNN 50/20 93% 92% 93%

CLA [28] CLA 50/20 96.3% 98.7% 96.1%
Proposed method 1 Hybrid 50/20 98.3% 98.1% 97.3%
Proposed method 2 Hybrid 50/20 99.4% 99.6% 99.1%

CONCLUSION

In  this  paper,  a  hybrid  method  was  presented  for  digital
retinal image processing for diagnosis and screening purposes.
A supervised/semi-supervised approach for exudate detection
in fundus images was presented and the optimum structure was
found in a comprehensive analysis. Ripplet transform and cycle
spinning method was used to remove the noises and artifacts.
The image was transformed into a fuzzy domain after  it  was
denoised.  A  cellular  learning  automata  model  was  used  to
detect  any  abnormality  in  the  image,  which  is  related  to  a
lesion. STARE retina image dataset, for a neighborhood of 5 x
5,  score  of  ,  penalty  of  ,  ratio  of  state
overall  variation in  three  sequent  cycles  in  cellular  automata

, updating additive value  and rule selection
threshold value  the mean value of statistical criteria
averaged  over  all  dataset  can  reach  99%  which  is  an
outstanding  assessment  result  for  the  proposed  method.
Considering the advantages and proficiencies of the proposed
method, one may be interested in a more rapid algorithm for
real-time  applications  where  the  processing  should  be
accomplished  in  a  short  fraction  of  time.  Hence,  the  authors
suggest  further  studies  and analyses of  the computation time
for the proposed method in the future.
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