
 The Open Medical Imaging Journal, 2012, 6, (Suppl 1-M4) 31-38 31 

 
 1874-3471/12 2012 Bentham Open 

Open Access 

Myocardial Blood-Oxygen-Level-Dependent Magnetic Resonance Imaging 
with Balanced Steady-State Free Precession Imaging Approaches 

Rohan Dharmakumar*,1, Sotirios A. Tsaftaris2 and Debiao Li1 

1Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los 
Angeles, CA 90048, USA 
2Computer Science and Applications, IMT Institutions, Markets, Technologies Institute for Advanced Studies Lucca, 
Piazza S. Ponziano, 655100 Lucca, Italy 

Abstract: The current state of myocardial Blood-Oxygen-Level-Dependent (BOLD) MRI with balanced steady-state free 
precession (SSFP) approaches is reviewed. Initial studies forming the basis for SSFP-based detection of oxygenation 
changes beginning with whole blood studies, progressing through controlled studies that consider microcirculatory 
changes in oxygenation in skeletal muscle and kidney, culminating in basic myocardial studies are outlined. The 
theoretical basis to observe signal changes and the mechanisms that facilitate such observations are elucidated. Methods to 
overcome limitations in sensitivity are described.  
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INTRODUCTION 

 Coronary artery disease is the leading cause of death in 
the United States [1]. It is estimated that nearly 7 million 
people are living with coronary artery disease (CAD) in the 
US and about half a million people die from it each year. 
The most common form of CAD leads to narrowing of the 
coronary arteries (stenosis) resulting in reduced blood flow 
and oxygen supplied to the heart muscle. Accurate early 
detection of flow deficits may permit interventional revascu-
larization procedures (pharmacological intervention, percuta-
neous transluminal angioplasty, and/or bypass surgery) to re-
establish flow to the hypoperfused regions [2]. The absence 
of revascularization increases the risk of sudden cardiac 
death [3]. 

IMAGING APPROACHES FOR DETECTING CORO-
NARY ARTERY DISEASE 

 Accurate non-invasive imaging methods for detecting 
coronary artery disease are necessary to determine which 
patients should undergo revascularization therapy. The gold 
standard for detecting coronary artery stenosis is X-ray 
angiography with iodinated contrast agent which is expen-
sive, invasive, and does not provide information regarding 
the functional status of the myocardium, which is perhaps 
more important than morphological information in treating 
the disease [4-6].  
 In order to identify CAD on the basis of functional status 
of the myocardium, significant research efforts have been 
devoted to the development of noninvasive methods, but  
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establishment of such methods remains challenging. Current 
approaches include computed positron emission tomography 
(PET) and single photon emission computed tomography 
(SPECT) [7-10]. PET is a promising method for detecting 
regional myocardial blood flow differences. However, PET 
studies are limited by low spatial resolution, limited avail-
ability, and administration of ionizing radiation. SPECT 
imaging is the technique most widely used for detecting both 
metabolic activity and perfusion. However, like PET, 
SPECT techniques are also limited by low spatial resolution 
and/or potentially harmful ionizing radiation. 
 MRI is a noninvasive imaging modality that is gaining 
increasing acceptance for depiction of vascular anatomy and 
measurement of cardiac function. MRI has several potential 
advantages over conventional methods: a) avoids ionizing 
radiation; b) uses gadolinium chelates as contrast material 
rather than iodinated contrast media. MR contrast agents are 
associated with markedly reduced allergic reactions and 
nephrotoxicity compared with iodinated agents; and c) MRI 
can provide functional information as well as anatomy in the 
same setting.  

DETECTING CORONARY ARTERY DISEASE WITH 
MRI 

 MRI has been used to directly visualize coronary artery 
lumen and detect stenoses. Various techniques have been 
developed and initial clinical studies are promising [11-20]. 
While significant interest has been placed on identifying 
stenotic coronary vessels, coronary stenoses do not necess-
arily result in a negative prognosis [5, 6]. Thus functional 
assessment might be a more direct and reliable measure of 
success for an interventional procedure than methods that 
identify anatomic lumen changes.  
 First-pass MRI with gadolinium conjugates has been 
used for assessing perfusion changes in the setting of coro-
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nary artery disease [21-27]. First-pass methods rely on the 
detection of changes in myocardial perfusion reserve due to 
coronary artery disease and thus typically require the use of 
pharmacological stress agents. This method is evaluated 
most commonly using rapid imaging techniques with multi-
slice capabilities. While this approach can identify regions of 
perfusion deficits, the method is limited by inadequate 
myocardial coverage and sub-optimal temporal and spatial 
resolution because of the need to capture the first passage of 
the contrast media at relatively high temporal resolution (1 
frame/heartbeat). These limitations can decrease the diag-
nostic sensitivity and specificity. 

MYOCARDIAL BOLD MRI 

 An alternate method for identifying perfusion deficits 
relies on endogenous contrast mechanism mediated by red 
blood cells. It is known that magnetic susceptibility of red 
blood cells is determined by the oxygen saturation (%O2) of 
the hemoglobin. Differential %O2 of hemoglobin molecules 
affects the local magnetic field variations in the intra- and 
the extra-vascular spaces [28-35]. The changes in field 
inhomogeneities, due to changes in %O2, are realized as MR 
signal changes. This is known as Blood-Oxygen-Level-
Dependent (BOLD) MRI.  
 The potential benefits of BOLD MRI for detecting global 
or regional myocardial ischemia due to CAD were demons-
trated at least a decade ago [36-40]. A number of studies 
have demonstrated the feasibility of using the MR BOLD 
effects to assess myocardial blood oxygenation secondary to 
flow changes in both animals and humans [36-53]. Current 
BOLD methods rely on deriving oxygen-sensitive contrast 
with pharmacological stress agents by inducing coronary 
artery vasodilation, with minimal change in myocardial 
oxygen demand. Under normal conditions, these stress 
agents increase baseline coronary venous %O2 from 20-30% 
to 70-80% [54]. However, the presence of stenosis limits the 
coronary venous %O2 from changing markedly during 
pharmacologic stress, leading to differential venous %O2 
between ischemic and non-ischemic (healthy) myocardium.  
 The first method used for myocardial BOLD imaging 
relied on detecting changes in transverse relaxation constant 
T2* due to changes in %O2 using vasodilatory agents [36-
40]. Although T2* studies have shown promising results, 
large magnetic susceptibility artifacts from the lungs [55] 
have significantly limited the image quality. More robust T2-
prepared methods have provided improved image quality 
overcoming susceptibility artifacts from the lungs. However, 
long data acquisition times, cardiac and respiratory motion, 
and signal modulation during acquisition have been 
significant obstacles. More recently, balanced steady-state 
free precession imaging using alternating radio-frequency 
pulses (SSFP) [53] has been proposed to overcome many of 
the limitations. SSFP imaging has the following potential 
advantages over existing MRI methods in the functional 
assessment of coronary artery disease: (a) cardiac MRI exam 
without stress-inducing or exogenous MR contrast agents; 
(b) improved image quality (signal-to-noise ratio and spatial 
resolution); (c) cardiac phase-resolved BOLD imaging; (d) 
increased sensitivity to detect regional oxygen deficits; and 

(e) ability to repeat the exam multiple times within the same 
imaging.  

OXYGEN-SENSITIVE SSFP IMAGING 

 Balanced steady-state free precession imaging using 
alternating radio-frequency pulses (SSFP) has gained wide-
spread recognition for its ability to provide fast scans with 
high signal-to-noise ratio (SNR). It is the method of choice 
for cardiac cine imaging at 1.5T and is routinely prescribed 
as part of every clinical CMR (cardiovascular magnetic reso-
nance) exam. The resulting images are analyzed for func-
tional/morphometric changes in the heart, while myocardial 
signal intensities are typically not evaluated. One of the 
primary objectives of this review is to demonstrate that 
myocardial signal intensities from SSFP acquisitions can 
reflect microcirculatory oxygenation. The sensitivity of 
myocardial SSFP signal intensities to be modulated by 
changes in intravascular oxygenation precipitated from 
initial observation and validation that SSFP signal depends 
on oxygenation saturation of red blood cells (%O2) in whole 
blood. 

Studies in Whole Blood 

 Early observations by Brittain et al., that SSFP imaging 
enables the discrimination between arteries and veins 
motivated further investigations to study the sensitivity of 
SSFP signals to oxygenation changes in whole blood [56]. 
Systematic whole-blood studies accompanied by theoretical 
modeling proved that SSFP signals are indeed strongly 
influenced by oxygen state of whole blood (%O2) [57]. 
These studies showed that it is the motion of spins through 
local field inhomogeneities in and around deoxygenated red 
blood cells that generate SSFP-based image contrast. In 
particular, it was shown that when spins undergo Brownian 
motion in blood, they randomly enter and leave the red blood 
cells while being influenced by the periodic radiofrequency 
pulses. The extent of their transverse and longitudinal relaxa-
tion over the repetition time (TR) in due course determines 
the bulk steady-state signal. Since %O2 determines the 
frequency variations inherent to the medium in which spins 
undergo diffusion, the %O2 also affects the steady-state 
signal. In addition to demonstrating the mechanism asso-
ciated with oxygen sensitivity, this paper explored the exten-
sive parameter space of SSFP with the intent of optimizing it 
for robust oxygen-based contrast. Results showed that for a 
given change in %O2, when the off-resonance effects are 
minimized, SSFP signal changes in whole blood are directly 
dependent on TR, flip angle (α), and field strength (B0). As a 
first application, these basic studies were extended to 
intravascular 3D peripheral angiographic methods aimed at 
discriminating arteries and veins based on %O2 differences 
[56, 58, 59]. Fig. (1) shows the presence of oxygen-sensitive 
contrast between an artery and a vein in the leg from one 
slice of a 3D acquisition in a human volunteer. 

Detection of Microcirculatory Oxygenation Changes with 
2D SSFP 

 On the basis that whole blood oxygenation changes can 
be detected with SSFP, rigorous studies were conducted to  
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Fig. (1). Sagittal SSFP image of the lower leg of a human 
volunteer. The image shows a noticeable contrast between the 
femoral artery and vein which typically differ by about 25 %O2 
[femoral vein %O2 is approximately 70% and femoral artery %O2 is 
approximately 95%]. Figure adopted from [57]. 

evaluate the feasibility of detecting oxygen-sensitive contrast 
in tissue, specifically in kidney cortex and skeletal muscle, 
by altering systemic %O2 in New Zealand white rabbits [60]. 
Systemic arterial hypoxia was induced in the rabbits by 
varying the partial pressure of molecular oxygen in breathing 
gases so that the arterial blood oxygen saturation varied from 
~88% (normoxic state) to ~63% (hypoxic state). 2D SSFP 
scans were performed using whole-body 1.5T and 3.0T scan-
ners at the different physiologic states. Signal differences 
between normoxic and hypoxic states in the kidney (Fig. 2) 
and muscle, normalized by the change in arterial %O2 
(defined as Oxygen Sensitivity), showed statistically signifi-
cant signal differences in tissues under normoxia and 
hypoxia. Such changes also showed a strong dependence on 
B0 and tissue type (Fig. 3). Mathematical modeling to eluci-
date the biophysical mechanisms of image contrast showed 
that the experimentally observed oxygen sensitivities were 
tied to fast exchange of spins between the plasma and red 
blood cells, as well as the peri-vascular gradients set up by 
the magnetic susceptibility shifts between the intra- and 
extra-vascular pools of spins. These studies also showed that 

 
Fig. (2). Typical oxygen-weighted images obtained under normoxic (left) and hypoxic (right) conditions using 2D-balanced SSFP imaging in 
a healthy rabbit. The arterial blood oxygen saturation at normoxic and hypoxic states in the animal was approximately 88% and 63%, 
respectively. Note particularly the signal difference in the kidney under normoxia and hypoxia. Figure adopted from [60]. 

 
Fig. (3). A bar chart showing experimentally observed mean Oxygen Sensitivity (defined as the relative change in signal difference between 
normoxic and hypoxic states per 1% change in arterial blood oxygen saturation), from measured signals under normoxia and systemic 
hypoxia. The results, reported as means ± standard deviation, show that field strength and greater blood volume fraction in kidneys directly 
enhance oxygen sensitivity (p < 0.001). Figure adopted from [60]. 
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the greater oxygen sensitivity observed in kidney cortex 
relative to that of the skeletal muscle is related to the greater 
blood volume in kidney cortex compared to skeletal muscle 
(Fig. 2).  

Myocardial SSFP-Based BOLD MRI with Provocative 
Stress at 1.5T in Canines 

 The extension of the SSFP approach for evaluating 
microcirculatory oxygenation changes in the myocardial 
tissue was first evaluated in a canine model with surgically 
controllable coronary artery stenosis in the presence of 
adenosine stress [53]. Animals instrumented with a hydraulic 
occluder over their left circumflex coronary artery (LCX) 
underwent CMR studies using 2D SSFP cine imaging. 

Compared to conventional cine SSFP imaging that is used 
for functional assessments, a longer TR was used to ensure 
BOLD sensitivity. Cine imaging was prescribed to ensure 
that the magnetization was in steady state. Results showed 
that regional perfusion deficits due to the presence of LCX 
stenosis were observable in a cardiac phase dependent man-
ner. The results were compared to the first-pass perfusion 
technique and correlated against gold-standard microsphere-
based flow differences. 2D BOLD SSFP method accurately 
predicted the regional myocardial flow deficit region identi-
fied by the first pass technique employing an exogenous con-
trast media (Fig. 4). Results also showed that it is possible to 
acquire cardiac phase-resolved BOLD images with 2D SSFP 
imaging (Fig. 5), albeit a fraction of the diastolic frames 
were of poor quality due to significant flow artifacts. More-

 
Fig. (4). Typical short axis images showing regional oxygen-sensitive contrast obtained with SSFP-based BOLD technique at pre-stenosis 
with adenosine (A), severe stenosis (B) at end systole. Image (C) is the associated first-pass perfusion image obtained at the severe stenosis 
state and image (D) is the spatial map (scale provided by the grey-scale bar) of microsphere-based flow difference between pre-stenosis (with 
adenosine) and severe stenosis. The arrows subtend the regions where the perfusion deficits are expected to develop due to the stenosis of 
LCX in dogs. Note the discriminating signal loss in these regions in image B and the close correspondence between the first-pass perfusion 
and microsphere-based flow map. Figure adopted from [53]. 

    
Fig. (5). (A) Typical cardiac phase-resolved BOLD images (early systole (ES), mid systole (MS), late systole (LS), and late diastole (LD)) 
showing regional myocardial oxygen deficits in the LCX territory during mild and severe stenosis of the left circumflex coronary artery (with 
adenosine). Note that the extent of signal loss in the LCX territory is related to the extent of LCX stenosis. Baseline and pre-stenosis are also 
shown at the same cardiac phases for reference. (B) Plot shows the percent change in SSFP-based BOLD contrast at mid-systole (open 
circles), end-systole (open triangles), and late diastole (open squares) and the associated microsphere-based flow changes (closed squares) 
observed relative to pre-stenosis over all studies. Note the close correspondence between the MR and microsphere data throughout the 
myocardium (sectors 1 through 8) at all the cardiac phases analyzed. The MR and microsphere measures of relative signal changes are 
plotted as mean ± standard error. The dotted black lines (MR) and solid gray lines (microsphere) are provided for visual guidance. Figure 
adopted from [53]. 
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over, although a strong correlation between SSFP signal 
intensity and true perfusion was established, a direct valida-
tion that microcirculatory oxygenation changes mediated the 
SSFP signal changes was not established by this study.  
 Earlier studies had accounted for the biophysical mecha-
nisms mediating the detection of oxygenation changes on the 
basis of SSFP signal intensities. However, these mechanisms 
do no account for the microvasculature (capillaries) of the 
heart that contains nearly 90% of the blood volume. Nearly 
two decades ago, it was shown that the transverse relaxation 
changes that facilitate the detection of microcirculatory 
oxygen changes as BOLD signal changes are strongly 
dependent on the size of the blood vessel. Although this is 
well established for gradient-echo and spin-echo imaging 
methods [34], it remained to be evaluated for SSFP imaging, 
particularly in the context of myocardial tissue. Recent stu-
dies, using Monte-Carlo simulations (MCS), and controlled  
 

 

Fig. (6). SSFP-based myocardial BOLD contrast obtained from 
Monte-Carlo (MC) stimulations (OCsim) and experimental studies 
(OCexp) with the same parameters (TR= 3.5 ms, 4.7 ms, and 6.0 ms; 
Flip angle (FA) = 30o, 50o, and 70o). Figures adopted from [62]. 

animal studies have bridged this gap [62]. In the same study, 
the effect of imaging parameters on SSFP-based myocardial 
BOLD contrast was also studied using numerical simulations 
and experimentally validated. Results showed that TR and 
flip angle play a significant role in determining SSFP-based 
myocardial BOLD contrast. Both MCS and experimental 
results showed that increasing the flip angle or TR gave a 
concomitant increase in SSFP-based myocardial BOLD 
contrast (Fig. 6). The study also showed that a combination 
of TR/flip angle= 6.0ms/70° provided the highest oxygen 
contrast among all the parameter sets studied (TR=3.5, 4.7 
and 6.0ms; FA=30°, 50° and 70°), although image artifacts 
in some diastolic frames were evident as TR was increased 
from 3.5 ms to 6.0ms.  
 2D Cine SSFP BOLD imaging does not account for the 
through-plane motion of heart potentially leading to periodic 
breakdown of steady state in the tissue being imaged. To 
address this, a canine study was performed to investigate 
whether there are any discernable differences in SSFP 
BOLD contrast between 2D and 3D acquisitions in instru-
mented canines with LCX occluders. Results from this study 
showed that oxygen sensitivity between 2D and 3D acquisi-
tions were not significantly different, demonstrating that 
through-plane motion does not significantly alter myocardial 
SSFP BOLD contrast (Fig. 7). However, to limit the acquisi-
tion time to within a single breath hold, the maximum TR 
that was used in the study was 4.7 ms. To evaluate whether 
BOLD contrast differences are detectable at longer TRs (e.g. 
TR = 6.2 ms) between 2D and 3D acquisitions, further 
studies are necessary.  

 
Fig. (7). Regional 2D and 3D SSFP BOLD Contrast between LAD 
and LCX regions under baseline and stenosis (with adenosine) 
conditions. While there was no significant Contrast difference 
between 2D and 3D under either condition, a significant Contrast 
difference was observed between baseline and stenosis conditions 
(p<0.01) for both 2D and 3D scans.  

SSFP-Based Myocardial BOLD MRI at 3.0T  

 Previous theoretical and experimental studies in other 
tissue types, have clearly demonstrated that SSFP-based 
oxygen-sensitive contrast is highly dependent on field 
strength. To evaluate whether such sensitivity patterns can 
be extended to the myocardial tissue, theoretical simulations 
and experimental studies using canine models were per-
formed at 1.5T and 3.0T [61]. Theoretical BOLD Contrast, 
defined as the difference between baseline and hyperemic 
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signal intensities normalized by the signal intensity at hyper-
emic state in the presence of a severe coronary stenosis, was 
computed. Results showed that compared to 1.5T, oxygen 
sensitivity at 3T, should be 3-fold greater. Experimental 
BOLD Contrast was computed as the difference in signal 
magnitudes between the LCX territories at baseline and 
severe stenosis states normalized by the microsphere–based 
perfusion contrast (computed analogous to BOLD Contrast 
using fluorescent signals from microsphere). Experimental 
results (Fig. 8) confirmed the theoretical findings. In parti-
cular, a near 3-fold increase in oxygen sensitivity was 
observed at 3.0T relative to 1.5T (Fig. 9). Experimental 
findings showed a high correlation between SSFP-signal 
intensity differences and true perfusion changes ascertained 
from microsphere flow analysis. However, greater field 
inhomogeneities at 3.0T due to the susceptibility differences 
between the heart and lung tissue caused significant diffi-
culties in shimming were notable limitations of the study. 
Improved shimming strategies that can permit long TR SSFP 

imaging are necessary to take advantage of the sensitivity 
gains at 3.0T.  

SUMMARY AND OUTLOOK 

 Myocardial BOLD MRI using SSFP approaches have the 
potential to identify regional changes in microcirculatory 
oxygenation in the presence of provocative (pharmacolo-
gical) stress. The theoretical basis for signal changes, basic 
studies in animals have provided a strong basis for further 
studies. Higher-field imaging studies have shown pathways 
for improving the sensitivity for assessing BOLD signal 
changes. 
 The advancement of SSFP-based myocardial BOLD MRI 
to the clinical realm will require further studies that demons-
trate its utility in patients. Successful patient studies will in 
turn require acquisition strategies that are fast, generate 
artifact-free images that can also provide quantitative infor-
mation relating to the disease state with sufficient sensitivity 

 
Fig. (8). Typical short axis MR images obtained at 1.5T (top row) and at 3T (bottom row). Images A and D are SSFP images obtained at 
stress (with no occlusion), images B and E are SSFP images at systole under LCX stenosis of similar extent, and images C and F are the 
corresponding first pass images acquired under the same stenosis levels as in B and E, respectively. Note the perfusion deficits and its close 
correspondence to BOLD images in the LCX territories. Also note the overall improvement in image quality at 3T compared to 1.5T, 
allowing for a more accurate visualization of oxygen deficit (B and E) in the LCX territory. Figure adopted from [61]. 

 
Fig. (9). (A) and (B) Show theoretical and experimental BOLD Contrast at 1.5T and 3.0T. Experimental results confirmed the theoretical 
prediction that, relative to 1.5T, significantly greater myocardial BOLD Contrast can be obtained at 3.0T. Figure adopted from [61]. 
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to identify clinically significant conditions, and validated 
approaches that simplify image analysis.  
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