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Abstract: Diffusion Tensor Imaging (DTI) has become a widely used MR modality to investigate white matter integrity 
in the brain. This paper presents the application of an automated method for voxel-wise group comparisons of DTI images 
in a study of fitness and aging. The automated processing method consists of 3 steps: 1) preprocessing including image 
format converting, image quality control, eddy-current and motion artifact correction, skull stripping and tensor image 
estimation, 2) study-specific unbiased DTI atlas computation via diffeomorphic fluid-based and demons deformable 
registration and 3) voxel-wise statistical analysis via heterogeneous linear regression and a wild bootstrap technique for 
correcting for multiple comparisons. Our results show that this fully automated method is suitable for voxel-wise group 
DTI analysis. Furthermore, in older adults, the results suggest a strong link between reduced fractional anisotropy (FA) 
values, fitness and aging.  
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1 INTRODUCTION 

 Diffusion Tensor Imaging (DTI) is increasingly being 
used to investigate the microstructure, integrity and changes 
of white matter in normal, developing, aging and patho-
logical brains [1-5]. Theoretically, DTI uses a "diffusion 
coefficient" to quantify the rate and directionality of water 
displacement in various brain tissues and has been developed 
as a tool to determine structural integrity of underlying 
tissues and fiber tracts pathways in white matter [6]. 
 DTI uses a tensor model estimated at each voxel position 
using linear or nonlinear regression methods given at least 6 
gradient directions. Diffusion sensitizing gradients measure 
signal attenuation of water diffusion by a second order tensor 
matrix. The most commonly used scalar property maps of 
DTI are fractional anisotropy (FA) and mean diffusivity 
(MD), which are calculated from the tensor eigenvalues. 
Other scalar maps include geodesic anisotropy (GA), 
parallel/axonal diffusivity (PD/AD), and orthogonal/radial 
diffusivity (OD/RD). The principal eigenvector of a tensor 
determines the overall direction of the fiber structure at the 
voxel under investigation. DTI fiber tractography can be  
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computed to determine the structures and pathways of major 
white matter fiber bundles. In this study, we focus on the use 
of FA images, which is the most commonly employed DTI 
map in neuroimaging studies. FA measures the degree of 
diffusion anisotropy and is usually highest in regions of 
tightly aligned, highly myelinized fiber bundles. 
 In clinical DTI literature, analytic DTI approaches vary 
from region-of-interest (ROI) based analysis to voxel based 
group analysis in neuroimaging studies. ROI analysis typic-
ally uses manual or automatically determined ROIs that 
define white matter structures, followed by statistical ana-
lysis of the average tensor indices within those ROIs [7]. 
ROI methods are probably the most commonly applied 
method due its simplicity, e.g. for the study of normal deve-
lopment [8-10], schizophrenia [11] or Krabbe's disease [12]. 
The major drawbacks of ROI analysis suffer from large intra 
and inter-rater variability and bias in defining meaningful 
fiber regions, which identify the long and curved shape of 
fiber bundles. Furthermore, the distribution of DTI property 
values such as FA within white matter regions is non-
Gaussian and thus simple averaging over large ROIs is non-
optimal. 
 In contrast, voxel-wise analysis of DTI is a highly loca-
lized analysis methodology that is able to differentiate struc-
tures. Voxel-wise analysis has been applied in DTI studies 
including autism [13] and schizophrenia [14, 15]. These 
methods are characterized by spatial normalization of a 
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population of DTI images, hypothesis testing at each voxel 
position and multiple comparison corrections. One reason for 
discrepancies across voxel-wise analysis techniques lies in 
the difficulty of appropriate anatomical registration of DTI 
data. This limitation of the established voxel correspondence 
is pointed out by Chung et al. [16], as they reported 
superior voxel-wise analysis reliability based on intra-subject 
registration compared to inter-subject registration. Due to 
their ease of use, voxel-based methods have become quite 
common in the last years, especially as a first-line tool for 
hypothesis generation. 
 One of the most popular voxel-based analysis frameworks 
was developed by Smith S.M. et al. [17], called Track-
Based Spatial Statistics (TBSS). TBSS brings all the FA 
images into a specific template with B-spline based non-
linear registration. Registered FA images are then averaged 
and skeleton of the mean FA images is extracted. Each sub-
jects' aligned FA values are projected to the nearest relevant 
tract center on the extracted white matter skeleton, where the 
local maximum FA is computed as the main analysis fea-
ture. This procedure compensates for the imprecision in the 
voxel correspondence and solves the smoothing problems so 
that statistical analysis can be done on each voxel of the 
white matter skeleton. In TBSS, only a very small number 
of voxels in the skeleton are thus tested as compared with a 
full brain voxel-wise method. The TBSS technique has been 
used to study preterm infants and adolescent development 
[18, 19], patients with schizophrenia [20], fetal alcohol syn-
drome [21] and Alzheimer's disease [22]. While this tech-
nique reduces the number of statistical tests and simplifies 
multiple comparison problems, multiple fiber bundles close 
to intersection areas are likely to be mixed on the skeleton 
and thus can significantly increase measurement variability. 
Limited warping quality especially close to the cortical 
regions due to the large inter-subject variability in brain 
shape may further limit the utility of TBSS, although this is 
an issue for most voxel-based analysis methods. In addition, 
the use of the projected FA maximum values is considered 
to result in reduced test/retest reliability, as maximal values 
are more susceptible to noise. 
 As a complement to DTI voxel-wise analysis, fiber-tract 
based analysis has been proposed to investigate group 
differences in DTI [23]. A DTI atlas is created via a fluid-
based nonlinear registration method [24] and fiber tracking is 
performed on the atlas tensor image. The diffusion property 
profiled are extracted along the parameterized fiber tracts from 
all the atlas-aligned subjects' tensor images so group com-
parisons can be performed on these fiber tract diffusion 
profiles. Several steps in this procedure still need to be 
performed manually (such as fiber tract source selection), 
thus limiting the level of automation. While fiber based 
analysis yield commonly the best compromise between 
locality and regional average, it is ill-suited for hypothesis 
generation. 
 There is great interest in the public health sector to 
identify biological factors within the central nervous system 
(CNS) that are associated with cognitive aging and brain 
structural changes [1,2,25-30]. Epidemiological studies 
suggest that cardiovascular fitness and education may  
 

protect the brain from degradation associated with aging [31-
34] and Alzheimer's disease [35, 36]. Along these lines, 
voxel-based morphology (VBM) has been used in high 
resolution structural MRI images including T1 and T2 
images [33] and more recently, DTI analysis has been 
developed to investigate the role of aerobic fitness on white 
matter integrity in the aged [37-39]. The related studies have 
found a decline of FA and an increase of MD in several white 
matter regions in normal aging [1-4]. 
 In this study, we developed a fully automatic methodo-
logy for voxel-wise group DTI analysis based on our 
previous work [40], which requires no manual intervention, 
while being able to investigate localized changes anywhere 
in brain. We investigated the relationship between aerobic 
fitness and white matter integrity in older adults using this 
methodology. This includes voxel-wise brain white matter 
group comparisons and voxel-wise correlation studies bet-
ween DTI properties. 

2. MATERIALS AND METHODS 

2.1. Subjects and Grouping 

 Fifteen older adults between 60 - 76 years of age (8 
males, 7 females) were involved in this study. This study 
was approved by the University of North Carolina at Chapel 
Hill’s Committee on the Protection of the Rights of Human 
Subjects. All subjects provided informed written consent for 
participation. All subjects were college educated, healthy 
without orthopedic, metabolic, cardiopulmonary, cognitive 
or MRI scanning limitations. None were on anti-depressants 
or on medications that would alter the heart rate response to 
exercise. 
 Subjects were divided into two groups based on their 
aerobic fitness according to fitness classifications for men and 
women aged 60 years and older [41]. Group 1 subjects were 
aerobically active and reported participating in aerobic 
exercise for a minimum of 180 min/wk for the past 10 years. 
Group 2 subjects were aerobically inactive and reported parti-
cipating in aerobic exercise less than 90 min/wk over the past 
10 years. Aerobic fitness was verified with a physician-super-
vised, peak exercise (walking) test on a treadmill utilizing 
Duke's ramped Pepper Treadmill Protocol [42]. The oxygen 
consumption (VO2 peak) was measured using the PARVO 
TrueMax VO2 Metabolic Cart System (ParvoMedics, Salt 
Lake City, Utah). The grouping and VO2 peak cut-off values 
for the groups are listed in Table 1. The gender composition 
between the two groups were comparable, however there was 
a significant age difference between them (p < 0.00001). 
 Whole-head DW Images were acquired with a head only 
3.0 Tesla MRI unit (Allegra Siemens Medical Systems) 
with a maximum gradient strength of 40 mT/m and a maxi-
mum slew rate of 40 mT/m/msec. A spin-echo echoplanar 
diffusion tensor weighted sequence (TE = 79 ms, TR = 9200 
ms, acquisition matrix = 128 × 104, FOV = 256 ×  
208 mm2, slice thickness=2 mm and number of slices =80 
with no gap) was used to acquire the DWI images. A 
baseline (b = 0s/mm2, non diffusion-weighted) image and  
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Table 1.  Aerobic Fitness Classifications per age and Gender. 
[*Males in the active group had significantly greater 
VO2 peak values than males in the inactive group  
(1-Way ANOVA, F(1,6) = 5.73, p =0.05). **Females 
in the active group had significantly greater VO2 
peak values than females in the inactive group (1-
Way ANOVA, F(1,5) = 14.51, p = 0.01), the unit of 
VO2 peak is ml/kg/min  

 

Active Group  
(Age: 62.11 ± 2.57 yrs.) Above Average Means (SD) 

Males (n = 5) VO2 peak ≥ 33 42.02 (7.8)* 

Females (n = 4) VO2 peak ≥ 26 29.25 (4.36)** 

Inactive group  
(age: 72.33 + 2.66 yrs.) Below Average Means (SD) 

Males (n = 3) VO2 peak ≤ 32 30.83 (1.1) 

Females (n = 3) VO2 peak ≤ 25 17.6 (3.4) 

 

21 directional DW images (b = 1000 s/mm2) were acquired 
(4 NEX) at an isotropic resolution of 2 × 2 × 2 mm3 

2.2. Preprocessing 

  The preprocessing procedure for our methodology con-
sists of the following steps: DICOM to NRRD format con-
version, DWI quality control, skull stripping and DTI 
computations. The dicom files were first converted into 
NRRD format1 using DicomToNrrdConverter, which is a 
command line module in Slicer2. DWI quality control was 
performed using DTIPrep [43]3, (see below for more detail). 
Skull stripping was then conducted using an atlas based 
tissue segmentation tool called ABC applied to both the 
baseline image and the isotropic diffusion weighted image4. 
The tensor images were then estimated using a weighted 
least squares method [44]. Finally, fractional anisotropy 
(FA), color coded FA and other property maps were com-
puted straightforwardly from the tensors. DTI estimation and 
computation was conducted using the DTIProcess toolkit5. 

2.2.1. DWI Quality Control 

  Artifacts are common in DTI acquisitions. Signal 
changes produced by severe artifacts result in erroneous 
diffusion tensor values. Due to the inherent low signal to 
noise ratio (SNR) and relatively long scanning time of the 
multi-direction DWI acquisition, compared to common MRI 
modalities, DWI suffers from eddy-current, head motion and 
bed vibration artifacts. Even if the artifact in DWI is just a 
few pixels out of balance, they result in estimation errors of 
tensors and give confusing artifactual appearances in tensor-
derived scalar maps and may result in bias throughout DTI 
analysis. Quality control procedures are of great importance 
for stable estimation of tensor fields. Currently, most of the 
quality control procedures are conducted manually by 
visually checking the DWI data set in a gradient by gradient 
and slice by slice method. The results often suffer from low 

                                                
1http://teem.sourceforge.net/nrrd 
2http://www.slicer.org 
3http://www.nitrc.org/projects/dtiprep 
4http://www.nitrc.org/projects/abc 
5http://www.nitrc.org/projects/dtiprocess 

consistency across different data sets because of insufficient 
QC inter-rater reliability. Our DWI quality control methodo-
logy is fully automatic and provides a crucial piece for robust 
DTI analysis in our study that may reduce the manpower 
needed for large DTI studies. As far as we know, DTIPrep 
[43] is the first comprehensive preprocessing tool for DWI 
quality control with protocoling, reporting and data correc-
tion capabilities. 

2.3. DTI Spatial Normalization 

  All the DT images were spatially normalized to acquire 
voxel-wise correspondence across all subjects for meaningful 
voxel-wise group comparison. DTI spatial normalization 
was composed of 2 steps. In the first step, we used an 
unbiased atlas computation method [45] based on nonlinear 
fluid deformation to initially create an unbiased DTI atlas. In 
this step, based on our previous work on DTI atlas building 
[46], we used intensity normalized FA images instead of the 
curvature of FA image [24] to avoid introducing any bias in 
subsequent group FA comparison analysis for registration 
process. Also, intensity normalized FA images outperform 
curvature FA image in terms of model generalization and 
specificity in atlas space [46]. The intensity normalized FA 
images were first smoothed using Gaussian kernel with σ = 
2 mm, which corresponds to the full width at a half maxi-
mum (FWHM) of 4.6. The atlas building procedure was 
initialized by an affine registration and followed by fluid-
model based nonlinear registration of the intensity norma-
lized FA image which is sensitive to the geometry of white 
matter, white matter/gray matter and white matter/cerebro-
spinal fluid (CSF) boundaries. Using the computed deforma-
tion field information, we warp each of the individual tensor 
images into the data specific unbiased space and compute the 
aligned DT images. After averaging these registered DT 
images, the first-step DTI atlas was created. Tensor warping 
and averaging were conducted in a Log-Euclidean space [47-
49]. 
 To further improve the voxel-wise correspondence qua-
lity, we conducted a second mapping step. In this step, we 
used the pair-wise diffeomorphic demons algorithm [50] to 
re-map each of the individual DT images to the unbiased 
atlas created in the first step. The demons algorithm was 
also initialized with an affine transformation. The DTI trans-
formations were performed the same way as in the first step. 
After all the DT images were warped, the atlas was updated 
by averaging the newly warped DT images. In this step, we 
again used the intensity normalized FA as the driving 
property map. Fig. (1) shows the schematic view of our 
novel methodology of the unbiased atlas computation in the 
first step via applying fluid-based atlas building and the 
second step after using demons registration algorithm. 
 Both FA and color coded FA maps show very good 
smoothness and sharpness within white matter boundaries of 
the atlas. Structures in the brain stem and pyramidal system 
are well defined. Overall, visual assessment of the atlas 
images implies a good alignment among all the subjects. 
Fig. (2) shows the color coded FA maps of the unbiased 
atlas created in the first and second mapping step. For the 
atlas created in the first step, smoothness within most parts 
of white matter and sharpness at white matter boundaries are 
obtained, while in some white matter regions, noise-like 
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appearance is still present, especially in the lower part of the 
cerebellum. This stems from imperfect mapping and errors in 
the nonlinear deformation field. After a remapping via the 
diffeomorphic demons algorithm, the white matter shows 
enhanced smoothness. Also, higher FA values across the 
whole brain indicate reduced average induced smoothing and 
thus a better voxel-correspondence. Although the second 
nonlinear warping step adds complexity and processing 

time, it improves the quality of voxel correspondence and 
voxel-wise analysis. 

2.4. Voxel-Wise Group Analysis 

 Scalar DTI indices were then calculated from the spatially 
normalized tensor images. After Gaussian smoothing with σ 
= 2 mm, the images were fed into the statistical comparison 

 
Fig. (1). Scheme of our methodology to building unbiased atlas and applying the voxel-wise statistical analysis. 

 
Fig. (2). Orthogonal views of color coded FA maps of the unbiased DTI atlas created after the rst (a: axial, b: coronal, c: sagittal) and the 
second (d: axial, e: coronal, f: sagittal) normalization mapping step. Colors encode the principal directions with red = left-right, green = 
anterior-posterior and blue = inferior-superior direction. 
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tool. A white matter mask was created with the atlas FA 
image using a direct thresholding at FA = 0.2 [5]. With this 
white matter mask, brain regions other than white matter 
were masked out before the statistical modeling and testing. 
This reduced not only unnecessary computation but also the 
number of multiple comparisons, and thus increased statisti-
cal power in detecting group differences. For the DTI voxel-
wise analysis, there is currently no standard statistical frame-
work. Due to the non-Gaussian nature of DTI data, semi-
parametric statistical methods without assuming any specific 
parametric distribution are more suitable. Two non-para-
metric techniques were commonly applied in the DTI set-
ting: one is bootstrap-based testing [51], and the other is 
permutation-based [16]. Both techniques have shown the 
ability to derive stable group difference test. In this paper, we 
used a heteroscedastic linear model for statistical modeling 
which avoids the limitations of existing statistical analysis 
of brain differences [52, 53] involving the homogeneous 
variation across subjects and data conforming to Gaussian 
distribution. We also used a robust test procedure based on 
wild bootstraping to correct multiple statistical test. The 
details of the statistical procedures have been explained in 
detail elsewhere [54]. Fig. (1) shows the voxel-wise group 
comparison scheme after two-steps DTI atlas building. Note 
that while doing voxel-wise group analysis, influences of age 
and gender were corrected as covariants in the heteroscedastic 
linear model. 

2.5. Voxel-Wise Correlation Analysis 

 In aging-fitness studies, VO2 has been shown to be corre-
lated with structural and functional brain image properties 
[33, 55]. In this study, we studied the correlations between 
VO2 peak and DTI properties. It is well known that raw VO2 
values demonstrate very large inter-gender and inter-subject 
variabilities and thus need to be normalized prior/as part of 
the statistical analysis. In this study, we used a piece-wise 
linear transformation of gender corresponding measurements 
from VO2 tables to correct for gender influences. Fig. (3) 
shows this piece-wise linear transformation. Pearson Correla-
tions were computed between FA values and the corrected 
VO2 peak values at each voxel position. The significance 
map of the corrections was also computed using the same 
testing method as voxel wise group comparison. 

3. RESULTS 

3.1. Voxel-Wise Group Comparison 

Comparison without Controlling for Age and Gender 

 Because of the limited sample size, two group compa-
risons were performed with and without age and gender 
corrections. Fig. (4) shows the group comparison analysis 
results of FA images without correction for age and gender, 
with the significance mapping overlaid on the atlas FA in 
violet color (p < 0.05). The mean FA is significantly greater 

 

 
Fig. (3). Gender corresponding VO2 measurements and mapping of the piece-wise linear correction for raw VO2 peak values. 
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in the active group (above average aerobic fitness) compared 
with the inactive group (below average aerobic fitness) 
primarily in the frontal lobe, parietal lobe, temporal lobe 
within the regions of cingulum, splenium, arcuate and the 
corpus callosum (CC) fiber tracts. The occipital lobe has the 
least number of significant voxels. 

 
Fig. (4). Voxel-wise group comparison result without correction for 
age and gender in the sagittal view in right-left order. The 
significance map is shown in violet where p < 0.05. 

 We compared our group comparison results with the 
ones from a standard TBSS analysis [17] using the atlas 
mapped FA images (see Fig. 1). TBSS procedures then 
generate the mean FA and the tract skeleton, followed by 
voxel-wise statistics of the maximal FA values projected 
onto the tract skeleton. The TBSS results are shown in Fig. 
(5) without correction of age and gender in the datasets. Our 
own results are in agreement with TBSS results in the sense 
that significantly different mean FA values are observed in 
the region of the corpus callosum (CC) and the orbital lobe. 
However, our approach found significantly larger pattern of 
differences across the whole brain with p < 0.05. 

 
Fig. (5). Voxel-wise group comparison results of applying TBSS 
approach without age and gender correction. The green areas show 
the tracts skeleton and the red-yellow areas present the significance 
map where p < 0.05. 

 An important limitation of the above group comparison 
results is the cross-sectional design which prohibits us from 
making casual inference about the effect of fitness on brain 
structures. Since the average age of the inactive group was 
greater than active group (62.11 ± 2.57) vs. (72.33 ± 2.66), 

age differences may contribute to some portion of the 
differences of FA values between the two groups. Moreover, 
gender has been recognized as an important variable affecting 
brain studies [56] and associated with related FA differences 
[57-59]. For example, in gender interaction with the corpus 
callosum studies, De Bellis et al. [57] observed females had 
higher FA values in the posterior midbody of the corpus 
callosum compared to males. Gender differences studies have 
also focused on human deficiency virus (HIV) associated 
with white matter alternations [59] and the study of midci-
ngulate cortex and therefore the underlying midcingulum in 
both hemispheres [60]. 

Comparison with Controlling for Age and Gender 

 The second group comparison analysis results of FA 
images is shown in Fig. (6) and illustrates controlling for 
age and gender, with the significance map overlaid on atlas 
FA in violet color where p < 0.05. Fig. (6) shows that after 
correcting for age and gender influences, the majority of 
significant voxels disappeared, while major regions close to 
the superior longitudinal fasciculus and the arcuate fasciculus 
remained. 

 
Fig. (6). Voxel-wise group comparison result with correction for 
age and gender in the sagittal view in right-left order (significance 
in violet, p < 0.05). 

 In comparison, no significant locations remained after 
correction for gender and age via the TBSS approach. Fig. 
(7) shows the TBSS results that correspond to the five slides 
shown in Fig. (6). These results confirm the expected higher 
sensitivity of our wild bootstrapping based voxel-wise statis-
tical approach as forecasted in Zhu et al. [54]. 

 
Fig. (7). Voxel-wise group comparison results of applying TBSS 
approach with age and gender correction. No significant areas are 
observed.  
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 Caution should be used when extrapolating the clinical 
relevance of the results presented here in Fig. (4) and Fig. 
(6), as well as the differences between Fig. (4) and Fig. (6) 
since the small sample size has the potential to create 
unstable results and produce correction errors in the linear 
model. 

3.2. Voxel Wise Correlation Analysis 

 Fig. (8) shows the voxel-wise Pearson correlations bet-
ween FA and the corrected VO2 peak values overlaid on a 
FA map in different views. Only the positive correlations are 
showed (red) for clarity. The correlation significance was also 
tested with the same wild bootstrap technique as for group 
testing. Significantly correlated (p < 0.05) voxels are dis-
played in violet. In most white matter regions, positive cor-
relations can be seen as expected. Scattered significant voxel 
can also be seen, with significant correlations between FA 
and corrected VO2 peak values in the genu, internal capsule 
and brain stem. As in the previous study, it is noteworthy 
that these results have been determined on a small sample 
and thus clinical interpretation should be performed 
cautiously. 

 

Fig. (8). Voxel-wise correlations between FA values and corrected 
VO2 peak values in the axial and sagittal views in inferior-superior 
and right-left orders. Positive correlations are shown in red. The 
significance map is shown in violet where corrected p < 0.05, 
WarmTint color mapping is used. 

4. DISCUSSION 

4.1. DTI Normalization and Unbiased Atlas Computing 

 Currently, DTI spatial normalization can be classified 
into 2 categories based on DTI properties driving the match-
ing process: 1) scalar map based [51] and 2) whole tensor 
based methods. Scalar map based methods have been inten-
sively investigated and well evaluated. These methods can 
be directly used to estimate the deformation field between 
DTI images. Whole tensor information based methods are 
relatively new and lack applications in clinical studies due to 
the Riemannian/non-Euclidean analysis space for tensors. 
The overall performances of both methods are comparable at 
image level, while the whole tensor based methods provide 
better local tensor corresponding where the orientation infor-
mation is taken into account. With the development of 
tensor based registration methods, there is improved match-
ing quality at both image and voxel levels. For spatial nor-

malization of group data sets, a well established brain atlas 
is used as a registration template. All the subjects are 
transformed into the atlas space and analyzed in that space. 
 The advantage is the results are presented in a familiar 
coordinate space to readers, thus it is easier to understand 
and interpret. The disadvantage is that the warped subjects 
are biased in shape to the template. Moreover, to map to a 
standard template, very large deformations may need to be 
estimated for some subjects, which is one of the major 
challenges the matching algorithms faces. Compared to a 
fixed template though, unbiased atlases uses the average 
space as the center of all the subjects in an unbiased fashion 
where the overall deformation is minimized. The method is 
limited in that any change in the data sets will result in a 
new atlas space. We propose a 2-step normalization strategy, 
first using the unbiased atlas computing method to build an 
unbiased atlas, then second, combining the pair-wise 
registration and average position optimization to enhance 
warping voxel-wise correspondence. 

4.2. Voxel-Wise Analysis 

 Once all the subjects are transformed into atlas space, 
voxel-wise analysis can be easily conducted for any scalar 
maps. We presented the FA analysis results in this paper, 
but it can be applied for any other scalar maps such as MD, 
PD, RD, etc. Because we used a heteroscedastic linear model 
for statistical modeling in this paper, it is very easy to 
incorporate other factors as co-variants by defining a proper 
design matrix. This elderly fitness study focused on 
demonstrating the application of a new automated DTI 
analysis methodology rather than testing clinical hypotheses 
related to the fitness parameters. Despite the inherent 
statistical limitations of sample size and issues of age 
imbalance, application of this new methodology to this 
unique population provides some valuable results compared 
to previous related studies. In order to investigate the effects 
of fitness exercise on cerebral white matter integrity in older 
adults, Heo et al. [39] examined a one-year long aerobic 
training program and determined longitudinal differences in 
FA values in 70 older adults. They found that improved 
aerobic fitness is associated with superior white matter 
integrity specifically in the prefrontal and parietal brain 
regions. In our paper, while we observed different specific-
region effects, we also found similar results with respect to 
the genu (prefrontal) and cerebrospinal tract (parietal). More 
related clinical results which corroborate our results can be 
found in Colcombe et al. [34, 61]. 
 In line with our results, a multiple sclerosis study [35] 
found a positive association between fitness and the white 
matter integrity in the right anterior corona radiata.  We 
found similar regions with respect to the cerbrospinal tract 
(right anterior corona radiata). 
 An important limitation of our study, as acknowledged 
before, is most of the group differences were eliminated when 
age and gender influences were taken into consideration. 
This may partially be due to the small sample size as well 
as the difference in mean age between the two groups. The 
average age for the inactive group was approximately 10 
years older than active group. A larger sample size with less 
age dis-parity between groups may improve the ability to 
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detect significant group differences. Furthermore, we are 
aware of sensitivity limitation in voxel-wise analysis, as we 
have also observed in this study a null finding in the 
cingulum region whereas we found a significant correlation 
with regional analysis in previous work [38]. 

5. SUMMARY 

 In summary, we describe an automated methodology for 
voxel-wise group DTI analysis in an older adult population. 
This methodology is composed of automated preprocessing, 
normalization and hypothesis testing, which may also be 
suitable to run on large sample DTI data sets. Our results 
indicated the improved cardiovascular fitness is associated 
with mostly prefrontal and parietal brain regions. 
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