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Abstract: In this paper, a polynomial fitting improved Bayesian approach is proposed for the reconstruction of volumetric 
metabolite images from long echo time (TE) whole brain proton magnetic resonance spectroscopic imaging (MRSI) data. 
The proposed algorithm uses a modified EM (expectation maximization) algorithm that takes into account the partial vol-
ume effects contained inside a thick slice MRSI. It incorporates high resolution volumetric magnetic resonance imaging 
(MRI) as a priori information. It further integrates the polynomial fitting method to smooth out artificial edges before the 
high resolution metabolite images are reconstructed. Our proposed reconstruction method has successfully extended our 
existing reconstruction of two dimensional (2D) metabolite images to 3D cases. The experimental results show that reso-
lution enhanced volumetric metabolite images are reconstructed. 
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1. BACKGROUND 

In vivo magnetic resonance spectroscopy imaging 
(MRSI) is a non-invasive method to measure valuable me-
tabolite concentrations in the human brain [1-15]. The MRSI 
data consist of four dimensional complex valued spectral 
data that can be used to locate the spatial concentrations of 
various metabolites inside the brain. Each metabolite con-
centration is identified at its unique resonance frequency of 
protons that is characterized by the spectral component of the 
MRSI data. Typically, a sub-sampling scheme is used for 
MRSI acquisition to shorten imaging time due to the long 
scan time required for collecting a large MRSI dataset. Im-
age reconstruction methods are usually applied off-line in 
order to retrieve various metabolite concentrations, particu-
larly, to obtain high resolution metabolite images from 
MRSI. In this paper, we propose a mathematical modeling 
and polynomial fitting improved Bayesian reconstruction 
method to obtain resolution enhanced 3D metabolite images 
from whole brain MRSI. 

1.1. Characteristics Of MRSI Data 

The metabolite images reconstructed from one single 
slice MRSI are so far of poor quality. The primary concern is 
that the MRSI data are characterized by very low spatial res-
olution. The data are accompanied by weak signal-to-noise 
ratio (SNR) due to low metabolite concentrations in the hu-
man brain. This results in the large voxel size used in  
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MRSI studies. A typical voxel has 5-mm to 10-mm in-plane 
size and its slice thickness is about 10-mm to 15-mm. This is 
relatively large when compared to the small voxel size used 
in volumetric MRI studies, namely, 0.5-mm in-plane size 
and 3-mm slice thickness. Another concern is the distortion 
in the acquired MRSI signals caused by patient motion during 
a prolonged acquisition of MRSI. Although the usage of low 
resolution in the whole brain volumetric MRSI studies has 
shortened the scanning time, it still takes about 30 minutes. In 
addition, the data are contaminated by the magnetic field in-
homogeneity, which causes strong signal distortion in certain 
regions. These factors together have led to the difficulty in 
reconstructing high resolution metabolite images.  

1.2. Image Reconstruction with MRSI Data 

The brain metabolites of interest in MRSI are N-
acetylaspartate (NAA), total choline (Cho), and total creatine 
(Cr). Several studies have concluded that changes in metabo-
lite concentrations can be used as indicators for the presence 
of tumors/cancers [16-18]. A straightforward way to gener-
ate the metabolite images is to estimate the intensity of each 
metabolite voxel-by-voxel, and then integrate the fitted in-
tensities from all voxels together as images. However, it re-
sults in poor image quality because the metabolite signals are 
of low resolution, and the data contain artifacts, such as the 
Gibbs ringing effects that come from the residues of strong 
signals, such as water and lipid. Therefore, it is necessary to 
reconstruct high resolution metabolite images using MRI a 
priori information. 

Methods for reconstructing metabolite images from 2D 
MRSI data was initiated in the early 1990s [3-10]. The SLIM 
(spectral localization by imaging) [8] and its generalized 
method GSLIM (generalized SLIM) [9] are based on the 
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assumption that the spectra confined to an anatomical com-
partment are homogeneous. The GSLIM are designed to 
capture some spectral variation within each compartment. 
Further, SLOOP (spectral localization with optimal point 
spread function) [10] proposes to optimize the phase-
encoding gradients, and to characterize the regions of interest 
by matching the point spread functions. Later, a spatial fre-
quency inhomogeneity correction [11] is used following the 
SLIM-type algorithm method. A Bayesian statistical recon-
struction method [1] is proposed using a modified EM algo-
rithm to incorporate the anatomical partial volume tissue 
concentrations from registered high resolution MRI images 
as a priori information. This algorithm is further tuned to 
process the clinical data. Significant improvement has been 
demonstrated for single slice MRSI. Several methods have 
been further proposed [19-21] to improve reconstruction 
using high resolution MRI as a priori. Recently, the line 
shapes derived from magnetic field mapping [22] are used as 
references for reconstructing metabolite images, and a sparse 
spectral model incorporated MRI a priori information [23] is 
used to overcome artifacts and to minimize the noise pre-
sented in the MRSI data.  

For 3D MRSI data, the existing reconstruction methods 
may be directly used to reconstruct metabolite images along 
the in-plane (xy) direction on a slice-by-slice basis. This re-
construction can be repeated along xz or yz direction to re-
duce overlaid metabolite concentrations in the through slice 
direction; however, this will lead to accumulated reconstruc-
tion errors. In this paper, we propose an algorithm that extends 
our 2D statistical Bayesian approach to 3D metabolite image 
reconstruction. Our new approach reconstructs high resolution 
metabolite images simultaneously in all three spatial direc-
tions. Our Bayesian reconstruction incorporates the high-
resolution a priori information provided by the volumetric 
MRI, and it further integrates the polynomial fitting method to 
reconstruct resolution enhanced metabolite images.  

2. METHODOLOGY  

2.1. The Mathematical Modeling of Whole Brain Volu-
metric MRSI Data 

The k-space data of the long TE whole brain MRSI are 
assumed to fit the mathematical model described in Eqn. 
(2.1), where S(kx, ky, kz, t) is a complex-valued free induction 
decay (FID) MRSI signal at k-space location kx,ky,kz, with 
time t. For each spatial location (x,y,z), Am x, y, z( )  is the spa-
tial signal intensity from the m-th metabolite (or the intensity 
is proportional to its actual concentration); Ta and Tb are two 
parameters that characterize the spatial Lorentzian and 
Gaussian line shape components in the FID signals; ∆B0 is 
the deviation of the magnetic field from the ideal field 
strength B0; ∅0 is the 0th-order phase term; fm is the resonance 
frequency generated by the m-th metabolite; γ is the gyro-
magnetic ratio constant, and j stands for the unit imaginary 
number. In this paper, long TE MRSI of the human brain are 
considered because most heavy molecules have tended to 
fade down at this stage, and typically only the three major 
singlet resonances of three metabolites of interest, namely, 
NAA, Cho, Cr, are present in the MRSI signals apart from a 
baseline for each (x,y,z). The imaging object is assumed to 
be of high resolution with dimensions Nx, Ny, and Nz. 

Volumetric echo planar spectroscopic imaging (EPSI) 
[12-15] is used in whole brain volumetric MRSI acquisition. 
Initially, the raw spatial data points acquired from 3D EPSI 
do not match the linear spatial locations; rather, the data fol-
low paths that can be typically described as sinusoidal func-
tions. Hence, the raw MRSI data are re-sampled to correct 
the sampling trajectory so that the resulting MRSI data 
properly reflect the spatial distance. After re-sampling, the 
MRSI data can be described by Eqn. (2.1). This model is 
built for equally spaced MRSI signals based on the Block 
equation. 
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The acquired data usually span only a small portion of 
the “central” k-space with dimensions Kx, Ky, Kz, with Kx< 
Nx, Ky< Ny, and Kz< Nz . The “central” k-space data are sam-
pled at (kx, ky, kz), with kx =-Kx /2 to Kx /2,  ky =-Ky /2 to Ky /2, 
and kz =-Kz /2 to Kz /2.  The observed data, d(kx, ky, kz, t), are 
composed of the metabolite signals, S, the baseline signals, 
b , and the noise signals, n, following the statistical model in 
k-space as described in Eqn. (2.2). 
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The baselines are typically assumed to be smooth and 
slowly varied curves. They cannot be parameterized because 
of their complexity, but they can be mostly removed from 
the data in a pre-reconstruction procedure. Therefore, the 
baselines are neglected from Eqn. (2.2) so that we can focus 
on the reconstruction method. The noise is assumed to be 
independent and identically distributed (i.i.d.) Gaussian 
noise with zero mean and variance 2

! .  

Our reconstruction method aims to estimate the missing 
high spatial-frequency content of the MRSI data to reach the 
desired dimensions, Nx, Ny, Nz. Note that the existing recon-
struction methods deal with single slice image reconstruc-
tion, namely, Nz =1. For our volumetric data reconstruction, 
we assume Kz < Nz. Our optimization method simultaneously 
takes spatial MRI as a priori. This reduced the fuzzy effect 
(see Fig. 1) introduced by the overlaid metabolite concentra-
tions in the through slice direction. Subsequently, the metab-
olite images with relatively thinner slice thickness will be 
reconstructed with enhanced features. 

2.2. Improved Reconstruction Algorithm for Volumetric 
MRSI Data 

In this section, the EM algorithm is used to estimate the 
metabolite intensities using Eqn. (2.3), assuming that 
d k
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distributions. The a priori information from the volumetric 
MRI provides some knowledge of the metabolite intensi-
ty Am x,y,z( )  that is contained in the signal S k
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described in Eqn. (2.1). Note that there is a connection be-
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tween the MRI and MRSI studies. The two imaging formats 
are originated from the same anatomical structure of the hu-
man brain, because the MRI data are typically collected im-
mediately prior to the acquisition of the MRSI data. Howev-
er, they have different resolutions. The volumetric MRI im-
ages demonstrate high-resolution anatomical structure of the 
brain with some significant features that may not exist in the 
MRSI. The a priori knowledge of volumetric MRI in Eqn. 
(2.3) can be replaced by the fraction of tissue concentrations, 
such as gray matter (GM), white matter (WM), CSF (CSF), 
and lipid (LIP), in a desired high-resolution setting to recon-
struct the intensity of each metabolite for every voxel from 
the MRSI data. 

The Vu in Eqn (2.4) represents the partial volume segmen-
tation for a given tissue ‘u’. It describes the percentage of the 
u-th tissue contributed to each voxel at the desired volumetric 
resolution. It is obtained using the following steps:  

 1. The high-resolution volumetric MRI images are seg-
mented to obtain tissue distributions of GM, WM, CSF, and 
LIP using SPM segmentation program [24], which incorpo-
rates both T1 and T2 volumetric MRI images.  

2. The high-resolution tissue volumetric distributions (in 
the x, y, z directions) are co-registered to all voxels inside the 
MRSI data to estimate the metabolite contributions originat-
ed from each tissue.  

Âm x, y, z( ) = argmax
Am (x,y,z)

 P d kx,ky,kz, t( ){ } |Volumetric MRI( )   (2.3) 

Modified EM Algorithm 

It is observed that the metabolite concentrations are natu-
rally homogeneous within a pure tissue in a small localized 
volume; therefore, an efficient way for reconstructing MRSI 
data is to further divide each volumetric tissue into sub-
volumes at the desired-resolution. The 3D volume inside the 
imaging FOV is cut into cubes that are referred to as sub-
volumes as shown in Fig. (2). The percentage of each tissue 
inside a sub-volume is defined in Eqn. (2.5), in which n is 
the total number of sub-volumes used for each tissue.  

 A sub-volume is said to have low tissue concentration 
when pu,r <threshold, where the threshold is set at 10%. A 
sub-volume with low tissue concentration is merged into its 
neighboring sub-volume (the one with the lowest concentra-
tion among the neighboring sub-volumes except the one with 
consideration) to form a larger sub-volume. This allows each 
sub-volume to include a significant amount of tissue. As a 
result, smaller amount of parameters are to be estimated. 
This is done for GM, WM, CSF, and LIP separately, and a 
varied total number of sub-volumes, denoted as Ru, may be 
resulted for each tissue type u ; therefore, the selection of 
sub-volumes depends on each tissue type. Fig. (2) shows an 
example of sub-volume selection for GM. Therefore, Eqn. 
(2.4) can be replaced by Eqn. (2.6), in which Vu,r is sub-
volume for each tissue, u is the tissue type, and 

u
Rrr ,,2,1  , != , is the sub-volume index. It is further as-

sumed that the metabolite concentrations are slowly varying 
in space, thus could be considered as constant across every 

 

Fig. (1). Through-slice partial volume effects: In the left, two thin slices of gray matter images were overlaid, resulting in a thick slice image 
of gray matter in the right hand side. Partial volume effect can be observed in the thick slice gray matter image. 

 
Fig. (2). The sub-volumes of the human brain that are corresponding to a single thick slice MRSI were defined using three thin image slices. 
As a result, three thin slices MRSI metabolite image of high resolution can be reconstructed. 
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sub-volume for each individual tissue type. Eqn. (2.6) is then 
reformulated into Eqn. (2.7) assuming constant metabolite 
intensities, denoted as bmur, over r-th sub-volume, u-th tissue, 
and for the m-th metabolite, namely, NAA, Cho, and Cr. 
Meanwhile, Eqn (2.1) can be approximated using Eqn. (2.8), 
where 

ru
V

FP
,

 is the m-th spectral signal constrained to sub-

volume 
ru

V
,

 as in Eqn. (2.9). 

pu,r =
# voxels of u

!th
 tissue in r

!th
 volume 

# total voxels in r
!th

 voume
,

r =1,!,nu,   for each u = GM,WM,CSF,LIP  
 (2.5) 

b̂mur = argmax
b
mur

 P d  kx,ky,kz, t( ){ } |VGM ,r,VWM ,r,VCSF,r,VLIP,r( ) (2.7) 

Sb kx,ky,kz, t( ) = bmurFPV
u,r

r=1

R
u

!
u=1

N

!
m=1

M

! kx,ky,kz, t,m( )  (2.8) 

FPVu,r
k
x

,k
y

,k
z
, t,m( ) = e

!  t
Ta x ,y,z( )

 ! t
2

Tb x ,y,z( )

x,y,z( )"Vu,r

#

e
! j2! fm x,y,z( )+!$B0 x,y,z( )%& '(t+!0 x,y,z( )+

xkx
Nx

+
yky

Ny
+
zkz
Nz( ){ }  

 (2.9) 

d kx,ky,kz, t( ) ! Sb kx,ky,kz, t( )+ n kx,ky,kz, t( ) =

RZ m,u, r,kx,ky,kz, t( )
r=1

R
u

"
u=1

N

"
m=1

M

"  
(2.10) 

RZ = bmur TV
u,r
x, y, z( )Vur x, y, z( ) fm x, y, z( )e

! j2!
k
x

N
x

+
k
y

N
y

+
k
z

N
z

"

#
$

%

&
'

z=0

N
z

(
y=0

N
y

(
x=0

N
x

(

+nmur
RZ

kx,ky,kz, t( )

  

with 

fm x, y, z( ) = e
!  t
Ta x ,y,z( )

 ! t
2

Tb x ,y,z( )

e
! j2! f

m
x, y, z( )+ !"B

0
x, y, z( )#

$
%
&
t +!

0
x, y, z( ){ }

 (2.11) 

The E-step:  

RZ
new

m,u, r,kx,ky,kz, t( ) = E RZ m,u, r,kx,ky,kz, t( ){ }  | d,b
old( )  (2.12) 

The M-step: 

 bmurnew
= argmax

b
mur

P RZ
new{ }  | Sb kx,ky,kz, t( )( )   (2.13) 

 The average sub-volume metabolite intensities for differ-
ent tissues are then estimated iteratively using the proposed 
signal model and the estimated spectral parameters. The EM 
algorithm is modified based on the one proposed in [1] to 

estimate the average metabolite intensities using Eqn. (2.10), 
in which RZ.  satisfies Eqn. (2.11).  

The RZ m,u, r,kx,ky,kz, t( )  are the k-space signals that com-
bine the metabolite intensities, the metabolite spectra, and 
are contaminated by Gaussian noise, nmur

RZ
kx,ky,kz, t( ) , as 

shown in RZ.  The Tvu,r
 
(x, y, z) is the percentage of u-th tissue 

at (x, y, z) within sub-volume vu,r. Based on this adjustment 
of the parameters, our modified EM algorithm is obtained by 
iterating the E-step and the M-step in Eqns. (2.12) and 
(2.13). 

The initial value of bmur is set to zero. Iterating the E-step 

and the M-step results in our estimation, bmurnew . The iteration 

terminates when bmur
new

! bmur
old

< ! , typical ! = 0.001 . The esti-
mated metabolite intensity, bmur, is the average density of the 
m-th metabolite, in the sub-volume, Vu,r . The estimated pa-
rameter, bmur, is further combined with the fraction of each 
tissue to reconstruct  each metabolite distribution and is used 
in the further processing in the following section. 
Polynomial Fitting 

The average metabolite signal intensities from all tissue 
sub-volumes are estimated using the modified EM-algorithm 
described in Eqns. (2.12) and (2.13). The amount of voxels 
contained in each 3D sub-volume is multiple times greater 
than the amount of pixels contained in a 2D sub-region. 
Thus, significant different values between two adjacent sub-
volumes are resulted from estimation due to the large 
amount of voxels used in estimating the average metabolite 
intensity of a sub-volume. As a result, the metabolite images 
reconstructed directly from the EM algorithm demonstrates 
significant contrast between two neighboring locations. This 
is what we called the blocky patch phenomenon. Additional 
processing steps are needed to avoid the artifacts being car-
ried over to the metabolite images reconstructed at the final 
stage. Since we assume the metabolite intensities follow a 
smooth and slowly changing pattern within each pure tissue, 
it is sufficient for us to selectively apply polynomial fitting 
to the reconstructed intermediate metabolite images, denoted 
as ( )zyxIb ,, . Note that the assumption may be somehow lim-
ited as recent research has shown evidence of significant 
change in some areas inside the brain [25]; our reconstruc-
tion method indeed relatively enhances such significant 
change as extrapolation is used in our reconstruction.  

The polynomial fitting of an intermediate metabolite im-
age is performed in the 2D plane for each z of higher resolu-
tion, according to Eqn. (2.14). 
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broaden region, U, including the sub-volume boundary. The 
region U is obtained using the morphological operation for 
dilation. Polynomial function of degree 2 is typically used in 
the polynomial fitting, and it is shown to be more robust than 
using polynomials of higher degrees according to experi-
ments. 
MRSI Data Extrapolation and Metabolite Image Recon-
struction 

After the polynomial fitting is applied, the reconstructed 
intermediate metabolite images, IUn x, y, z( ) , are then combined 
with the estimated spectral parameters to reconstruct the 
MRSI data of dimensions Nx, Ny, Nz, using Eqn. (2.8). The 
spatial high-frequency data that correspond to the missing 
data locations are selected and extrapolated to the low-
resolution volumetric MRSI data to form a new set of high-
resolution volumetric MRSI data using Eqn. (2.15). Inverse 
Fourier transformation in the spatial domain and Fourier 
transformation in the time domain are subsequently applied 
to the reconstructed high-resolution MRSI data.   
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Since MRSI collects spectral signals from all the voxels 
in the brain, the spectral fitting package [2] is used to re-
trieve the desired metabolite intensities voxel-by-voxel to 
form metabolite images. The advantage of our proposed al-
gorithm is that it simultaneously incorporates the volumetric 
anatomical edge information into Bayesian method to esti-
mate the intensities of the metabolite concentrations. It in-
corporates the spectral information of each metabolite pro-
vided by the MRSI, and it preserves the original MRSI spec-
tra in the low frequency k-space domain.  

The usage of sub-volumes has simplified the mathemati-
cal model of the MRSI and hence has simplified the recon-
struction of 3D metabolite images by reducing the number of 
parameters needed to be estimated. It has subsequently im-
proved the estimate of the metabolite intensities in all spatial 
dimensions. The reconstructed metabolite images have thin-
ner slice thickness and each slice has higher in-plane resolu-
tion. It also reduced the memory load that puts a huge de-
mand on the computational resource in 3D cases. In addition, 
this reconstruction method also practically avoids potential 
underestimate problem when the EM algorithm is applied, 
namely, it avoids the problem of insufficient sample size in a 
typical voxel-by-voxel estimate method, in which a large 
amount of voxel intensities needed to be estimated for each 
metabolite.  
Supplementary Methods 

Our proposed algorithm assumes that the signal model is 
a good fit for the data; however, in practice, the in vivo 
MRSI data persistently contain unwanted signals, distorted 
signals, noise, as well as catastrophic signals due to magnetic 

field distortion. Typical unwanted signals include, but not 
limit to, the water and lipid signals, which are much stronger 
than the metabolite signals of interest, and additional signal 
components, such as baselines that cannot be effectively 
modeled. The distorted signals are referred to metabolite 
signals that are usually distorted due to eddy current effects. 
The catastrophic signals are those strongly distorted signals 
in the boundary regions, such as the air-filled sinuses in the 
inferior frontal lobes and the inferior temporal lobes, where 
high and low susceptible materials have induced local mag-
netic field change. These signals cause mismatch between 
the MRSI and its mathematical model; therefore these use-
less signals contained in the MRSI data must be either re-
moved or must be restored before the MRSI data can be used 
for reconstruction. 

Additional steps, such as pre-acquisition steps and pre-
reconstruction steps, must be applied to the MRSI to regular-
ize the signals and prepare the data for the model. The pre-
acquisition steps include improvements in the pulse se-
quence design to optimize the useful signals in the acquisi-
tion steps, which is beyond our research scope. The pre-
reconstruction steps are regulating the acquired MRSI before 
our reconstruction method is applied. The pre-reconstruction 
steps include improvements, such as baseline removals, 
strong signal removals, eddy current corrections, and sub-
regional bad signal removals, as discussed in [1]. The pre-
reconstruction procedure is essential for volumetric MRSI 
reconstruction to ensure our model fits the MRSI data. 

3. EXPERIMENTAL RESULTS AND DISCUSSIONS 

The algorithm was first applied to simulated volumetric 
MRSI data to reconstruct metabolite images, and the output 
matches well with our expectation. It is then applied to in 
vivo MRSI data. The experimental results from both simulat-
ed data and in vivo volumetric MRSI are demonstrated in 
Fig. (4) and Fig. (5). The results from the simulated MRSI 
clearly showed improved reconstruction. Since the recon-
struction steps are similar for both datasets, here only the in 
vivo MRSI reconstruction is discussed.  

3.1. Materials and Methods 

A volumetric MRSI dataset from one healthy female vol-
unteer at age 38 was studied. In the acquisition, one set of vol-
umetric high-resolution MRI was obtained immediately prior 
to the MRSI acquisition using a head coil (data can be ac-
quired using parallel MRI technique; it is omitted here as this 
is not our focus in this paper). All the data were obtained using 
a 3 Tesla clinical whole body scanner (Siemens Healthcare). 
The parameters for MRSI acquisition are TE=70-ms, 
TR=1710-ms, and TI=198-ms. The MRSI data have 50 x 50 x 
18 k-space points, 256 time-domain data, with a 280-mm x 
280-mm FOV, resulting in voxel size of 5.6-mm in the xy-
plane, and 10-mm slice thickness in z direction. The MRI data 
have 512x512 points in each slice, with 256-mm x 256-mm 
FOV, resulting in 0.5-mm x 0.5-mm in-plane resolution, and 
1-mm slice thickness, and a total of 144 slices. 

 Tissue concentrations were obtained through segmenta-
tion performed on the high-resolution volumetric MRI data 
using the SPM package [24]. The tissue concentrations were 
co-registered to the spatial locations and the FOV of the 
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MRSI, and then re-sampled to the desired resolution with 
128 x 128 x 36 spatial points. High resolution MRSI data 
were reconstructed using our proposed reconstruction meth-
od, to reconstruct MRSI data with the in-plane spatial di-
mensions of 128 x 128 points, 36 slices, and 256 time-
domain points.  

In the experiment, the whole brain MRI images were di-
vided into 4 x 8 x 3 sub-volumes; then those sub-volumes 
without tissue concentrations were discarded, while those 
sub-volumes with low tissue concentrations were merged to 
their neighboring sub-volumes. Our algorithm, which com-
bined the modified EM optimization algorithm with poly-
nomial fitting, was applied to reconstruct the metabolite in-
tensities. A new MRSI dataset, with voxel size of 2-mm in 
the xy-plane and 5-mm slice thickness, was further recon-
structed. The volumetric metabolite images of NAA, Cr, and 
Cho, of enhanced resolution, were finally quantified. 

3.2. Results 

Fig. (3) displays some images showing the procedure to 
reconstruct the NAA metabolite distribution in the gray mat-
ter. The intermediate NAA image (shown in Fig. 3a) was 
reconstructed before the polynomial fitting procedure was 

applied. The image has shown some blocky artifacts. The 
sub-volume pattern (shown in Fig. 3b) was used for our re-
construction, and it showed the broadened boundary area 
where a polynomial fitting was applied. A smooth NAA me-
tabolite image obtained after the polynomial fitting is shown 
in Fig. (3c). The partial volume tissue distribution of the gray 
matter (shown in Fig. 3d) is used in metabolite reconstruc-
tion. The polynomial fitted metabolite image of a pure tissue 
was weighted by its partial volume concentrations to gener-
ate a metabolite image that reflected the metabolite concen-
trations in this tissue. The NAA distribution in the gray mat-
ter is shown in Fig. (3e). 

The metabolite images for other metabolites (Cho, and 
Cr) were obtained in a similar manner. All metabolite images 
were combined with the estimated frequency information to 
reconstruct the high-frequency data of the MRSI k-space 
(include the time-domain data). The data were then extrapo-
lated to the regularized low resolution k-space MRSI to form 
the MRSI data at the desired spatial resolution. Automatic 
spectral fitting was then applied to obtain the final metabo-
lite images. Show in Fig. (4) is the reconstructed Cho images 
for the simulated data, and shown in Fig. (5) is the recon-
structed NAA metabolite images.  

 

Fig. (3). The polynomial fitting procedure following the EM algorithm is shown here. (a). The NAA image constrained to sub-volumes in the 
gray matter is reconstructed. (b) The region where the polynomial fitting is performed. (c). The NAA image reconstructed after polynomial 
fitting. (d). The partial volume tissue concentration for the gray matter is used as a priori. (e). The NAA metabolite constrained to the gray 
matter. 
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Fig. (4). Multiple slices of Cho images simulated are shown in the row (i), the reconstructed Cho image from zero-filled FT of k-space MRSI 
data are shown in row (ii), and the reconstructed metabolite images using the proposed are shown in row (iii). Note that the reconstructed 
metabolite images in each column are corresponded to the same slice position.  
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This study has proposed a volumetric reconstruction al-
gorithm that uses a priori high-resolution spatial information 
to reconstruct the metabolite images to high spatial resolu-
tion. The algorithm incorporates the polynomial fitting and 
has resulted in an improved reconstruction of the metabolite 
images with higher resolution in xy-plane and thinner slice 
thickness. The results shown in Fig. (4) have demonstrated 
significant improvement in row (iii) when compared to the 
zero-filled FT reconstruction in row (ii), while the simulated 
Cho metabolite images are shown in row (i). Some slices of 
the reconstructed NAA metabolite images from in vivo 
MRSI data are shown in Fig. (5) (row (ii) and row (iv)); for 
comparison, the conventional zero-filled FT reconstructed 
NAA metabolite image slices are shown as well in Fig. (5) 
(row (i) and row (iii)). The images reconstructed with our 
proposed algorithm have demonstrated enhanced resolution 
in all the spatial directions. 
3.3. Discussions 

Improved structural features were demonstrated in the 
metabolite images reconstructed using our proposed algo-
rithm when compared to those reconstructed using zero-
filled Fourier transform (FT). In the zero-filled FT recon-
struction, spatial Gaussian filters were used to reduce strong 
Gibbs ringing effects in the volumetric metabolite images; 
therefore, some over-smooth can be observed in the resultant 
metabolite images. The metabolite images reconstructed 
using our proposed algorithm have avoided this problem, 
and the enhanced metabolite images have clearly shown the 
CSF regions. In addition, higher metabolite intensities in 
posterior brain regions can be observed in the enhanced me-
tabolite images. 

Using our proposed algorithm, the metabolite images 
with increased resolution are obtained. This is resulted from 

extrapolating the missing high frequency content to the low 
resolution MRSI, which is achieved by combining our modi-
fied EM algorithm and the polynomial fitting method. The 
polynomial fitting ensures that the artifacts from the inter-
mediate metabolite images (as shown in Fig. 3) were sup-
pressed so that they were not being carried over to the final 
stage. The output from our algorithm has demonstrated bet-
ter visibility of the metabolite intensities comparing to the 
output from the existing reconstruction method. 

It is necessary to mention that a few metabolite image 
slices corresponding to the top and to the bottom of the brain 
in the through slice direction were discarded for the in vivo 
MRSI. This is due to the very poor quality data components 
corresponding to these regions. This is the result of a) the 
susceptible magnetic gradient in these regions due to quick 
change in the magnetic field, and b) the problem of mis-
alignment between MRI and MRSI in these regions due to 
FOV change and possible patient motion. These poor quality 
data components were either discarded or were not recon-
structed because the data can only lead to poor reconstruc-
tion outcomes, which will affect the estimate of parameters 
in other regions as well. This shows that the accuracy of the 
reconstruction depends strongly on the capability to remove 
the artifacts. 

Our reconstruction algorithm is convergence. The recon-
struction outcomes using initial values taken from the esti-
mated metabolite intensities, obtained from the zero-filled 
reconstruction, are compared to the reconstruction outcomes 
from using zero as initial values. Our proposed algorithm 
generates consistent outcomes from both estimations after 
certain iterations. This has shown the convergence of the 
algorithm. The modified EM optimization algorithm was 
typically run for 10-12 hours although no significant change 
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Fig. (5). Multiple slices of NAA images reconstructed from zero-filled FT of the in vivo volumetric k-space MRSI data (row (i) and (iii)), 
and using the proposed algorithm (row (ii) and (iv)). Note that the reconstructed metabolite image is of higher spatial resolution in all spatial 
dimensions, comparing to the original acquisition.  
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in image quality was observed after approximately 5 hours. 
However, using the estimated metabolite intensities as the 
initial values is an efficient way to reduce the heavy compu-
tation for 3D reconstruction. 

Some problems with the reconstruction are that the re-
construction can be affected by distorted signals in the in 
vivo whole brain volumetric MRSI, and can be affected by 
some degree of mis-registration between the MRSI and the 
MRI data. Also, note that the signals used here are in fact the 
combination of the phase array coil data sets, which could be 
another factor for estimate errors; however, such data are 
still preferred in comparison to the lower quality data from a 
single-head coil because the use of a phase-array coil takes 
advantage of the advanced acquisition technique [26]. In 
addition, the large MRSI dataset has made the reconstruction 
vulnerable to errors in estimation because large amount of 
parameters to be estimated. Although the number of parame-
ters was reduced in our model, we still have a significant 
number of parameters to be estimated. 

4. CONCLUSIONS 

In this paper, a polynomial fitting improved Bayesian re-
construction method is proposed to reconstruct whole brain 
metabolite images for volumetric MRSI. It aims to simulta-
neously reduce slice thickness and increase the resolution of 
the metabolite images in all spatial directions. This method 
uses prior partial tissue concentration information of brain 
structure acquired from the co-registered MRI images to 
reduce the reconstruction errors resulted from the partial 
volume metabolite contributions. The polynomial fitting 
method is used to reduce the blocky patch phenomena 
caused by the modified EM algorithm. Our method combing 
the modified EM algorithm and the polynomial fitting meth-
od has been able to achieve resolution enhanced metabolic 
images; therefore, the quality of the reconstructed metabolite 
images is further improved. 
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