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Abstract:

Aims:

Prognosis of lung mathology severity after Covid-19 infection using chest X-ray time series

Background:

We have been inspired by methods analysing time series of images in remote sensing for change detection. During the current Covid-19 pandemic,
our motivation is to provide an automatic tool to predict severity of lung pathologies due to Covid-19. This can be done by analysing images of the
same patient acquired at different dates. Since no analytical model is available, and also no accurate quantification tools can be used due to many
unknowns about the pathology, feature-free methods are good candidates to analyse such temporal images.

Objective:
This contribution helps improving performances of medical structures facing the Covid-19 pandemic. The first impact is medical and social since
more lives could be saved with a 92% rate of good prognosis. In addition to that, patients in intensive care units (up to 15%) could a posteriori
suffer from less sequels due to an early and accurate prognosis of their PP. Moreover, accurate prognosis can lead to a better planning of patient’s
transfer between units and hospitals, which is linked to the second claimed economical impact. Indeed, prognosis is linked to lower treatment costs
due to an optimized predictive protocol using ragiological prognosis.

Methods:
Using Convolutional Neural Networks (CNN) in combination with Recurrent Neural Networks (RNN). Spatial and temporal features are combines
to analyse image time series. A prognosis score is delivered indicating the severity of the pathology. Learning is made on a publicly available
database.

Results:
When applied to radiological time-series, promising results are obtained with an accuracy rates higher than 92%. Sensitivity and specificity rates
are also very interesting.

Conclusion:
Our  method  is  segmentation-free,  which  makes  it  competitive  with  respect  to  other  assessment  methods  relying  on  time-consuming  lung
segmentation algorithms. When applied on radiographic data, the proposed ProgNet architecture showed promising results with good classification
performances, especially for ambiguous cases. Specifically, the reported low false positive rates are interesting for an accurate and personalised
care workflow.
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1. IMPACT STATEMENT
This paper presents a technical solution to prognoses the

evolution of Covid-19 pulmonary pathology based on a time
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-series of X-ray images and helps improve the performances of
medical  structures  facing  the  Covid-19  pandemic.  The  first
impact is medical and social since more lives could be saved
with a 92% rate of good prognosis. In addition to that, patients
in  intensive  care  units  (up  to  15%)  could  a  posteriori  suffer
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from  less  sequels  due  to  an  early  and  accurate  prognosis  of
their  pulmonary  pathology.  Moreover,  an  accurate  prognosis
can lead to better planning of patient’s transfer between units
and hospitals, which is linked to the second claimed economic
impact. Indeed, the prognosis is linked to lower treatment costs
due  to  an  optimized  predictive  protocol  using  radiological
prognosis.

2. INTRODUCTION

Coronaviruses are a large family of viruses that can cause a
variety  of  diseases  in  humans,  ranging  from colds  to  Severe
Acute Respiratory Syndrome (SARS) in 2003 and Middle East
Respiratory Syndrome (MERS) in 2012. In recent months, the
World  Health  Organization  (WHO)  has  declared  that  a  new
coronavirus  called  COVID-19  has  spread  aggressively  to
several  countries  around  the  world  [1].  The  specificity  of
COVID-19 is that it can cause respiratory tract disease, fever
and cough, and severe pneumonia in some extreme cases [2, 3].
Pneumonia is an infection that causes inflammation mainly in
the air sacs of the lungs responsible for oxygen exchanges [4,
5].

The COVID-19 pandemic can be considered serious due to
its high contagion and severity, especially the lack of treatment
so far [6]. The impact on healthcare systems is also high and
crucial  due  to  the  number  of  people  requiring  intensive  care
units  (ICU)  admission  and  mechanical  ventilators  for  long
periods  [7].  Making  evidence  of  COVID-19  infection  is
generally associated with specific lung pathologies. The most
reliable way is to perform PCR (Polymerase Chain Reaction)
[8] tests to assess the presence of Covid-19 RNA (Ribonucleic
Acid) in the hosting individual. PCR tests enjoy high precision
rates. However, the main weakness of such a molecular method
lies in its high specificity. Real-time PCR techniques have now
replaced conventional PCRs because they are more sensitive,
more precise, more reproducible, and suitable for large series.
Moreover, results can be obtained in less than three hours [9].

Due  to  low  testing  capacity,  especially  at  the  very
beginning of the pandemic spread, most countries performed
tests generally on persons suffering from unclear and advanced
symptoms, or individuals who evidently have been in contact
with infected ones.

In this sense, chest X-ray imaging is a technique that plays
an  important  role  in  the  diagnosis  of  COVID-19  disease.
Radiological tests may be performed by analyzing chest X-ray
images  and  identifying  lung  tissues  potentially  hosting
infections  [10].  However,  X-ray  data  analysis  requires  an
expert  in  radiology  and  may  be  time-consuming.  Therefore,
developing  an  automated  analysis  system  may  solve  this
problem and help save precious time for  radiologists.  In  this
context,  solutions  based  on  artificial  intelligence  (AI)  can
provide an accurate and inexpensive diagnosis for COVID-19
and  other  types  of  pneumonia  [11,  12].  Furthermore,  it  is
important to assess the pathology evolution for infected people,
especially  those  suffering  from  severe  PP  who  may  need
intensive  care.  This  is  mainly  essential  since  no  specific
treatment is  known up to date,  which means that a treatment
line  adaptation  may  be  recommended  if  no  improvement  is
observed. Pathology prognosis is also useful for prioritization

of patients to take charge in case of limited numbers of ICUs
[13, 14].

In this paper, we propose a method for pathology prognosis
based on analysing the time series of chest X-ray images. The
proposed method is based on both recurrent and convolutional
neural  networks,  and  allows  to  classify  patients  into  two
severity  classes:  positive  or  negative  evolution.  The  main
originality lies in the use of such a combination for COVID- 19
prognosis.

The  rest  of  this  paper  is  organized  as  follows.  After  an
introduction  covering  the  context  of  this  research  and  the
problem to be handled, Section III is devoted to a state of the
art  linked to  our  research.  In  Section IV,  an overview of  the
proposed approach is presented, and all the steps are detailed
for  the  multi-temporal  classification  of  X-ray  images.
Experimental validation is illustrated in Section V. Therefore,
discussion and limitation are presented in Section VI. Finally,
conclusions and future work are drawn in Section VII.

3. RELATED WORK

Time series data refer to a consistent flow of data sets over
a  period  spaced  in  time.  The  analysis  of  these  series  has
become  a  recent  area  of  interest  in  artificial  intelligence.
Accurate  forecasting is  becoming more  and more  vital  in  all
areas in order to make more informed and precise decisions.
Time series analysis is mainly used for: i) descriptive analysis,
i.e, identifying trends in the correlated data, ii) forecasting, to
predict short-term events and iii)  intervention analysis to see
how the event can be evaluated during the time series.

On the other hand, analysing time series generally presents
the  drawback  related  to  the  lack  of  annotated  data  sets.
Annotations for time Tn generally have to account for times Ti

with i < n. Having comparable data (same quality, size,...) is,
therefore,  an  additional  problem  that  leads  to  difficulty  in
designing  specific  algorithms.  In  this  sense,  several
applications  in  the  literature  have  addressed  this  problem,
especially in clustering [15], change classification [16], change
detection [17, 18], and forecasting [19].

In  medical  imaging,  time  series  are  often  used  for
functional [20 - 22] and spectroscopic [22] imaging, as well as
motion  analysis  [23].  In  this  context,  X-ray  images,  and
specifically CT (Computerized Tomography) are widely used
due  to  its  high  spatial  and  temporal  resolutions.  As  regards
lung  diagnosis,  X-ray  images  are  usually  used  to  track
pneumonia  or  other  specific  diseases.  To  analyse  3D  +  t
(3D+time)  data,  one  usually  needs  to  design  sophisticated
algorithms that are automatic, user-friendly, fast and accurate
[24].

Today,  Deep  Learning  (DL)  has  demonstrated  its
efficiency as stated hereabove in many fields of image analysis.
Specifically,  convolutional  neural  networks  (CNN)  [25]  are
among the most used networks to analyze visual imagery. The
specificity  of  CNN  lies  in  its  ability  to  learn  features
automatically  and  without  human  intervention  from  given
images,  in  contrast  to  classical  machine  learning  methods
where the designer has an obligation to specify the features to
be extracted, which always depends on the application context.
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Since  2012,  several  models  of  deep  convolutional  neural
networks (DCNN) [26] have been proposed such as AlexNet
[27], VGG [28], GoogleNet [29], Residual Net [30], Dense Net
[31] and Capsule Net [32].

As regards to data related to Covid-19, very recent works
have already started to design diagnosis aid tools based on DL
in order to detect Covid-19 specificities in chest X-ray images.
All the approaches used deep learning for image classification
as  Covid  or  non-Covid.  In  the  study  [33],  a  modified  neural
network ”ResNet-50” has been proposed, on which a Feature
Pyramid Network (FPN) is used to identify and extract lesions
automatically from CT images. Using this approach, the model
can detect and classify CT images into three possible classes:
healthy, COVID-19, and bacterial pneumonia. Likewise, chest
radiographic  images  (CXR) has  been  used  in  the  study [34].
The authors use CNN based on various ImageNet1 pre-trained
models  to  extract  high-level  features  (deep  features).  Those
different  features  were  fed  into  a  Support  Vector  Machine
(SVM)  as  a  machine  learning  classifier  that  constitutes  the
major improvement of this approach. Using the SVM classifier,
is  to  classify  the  radiographic  images  affected by the  corona
effect coming. In the study [35], a novel approach proposed by
the  authors  uses  a  COVID-Net  architecture  with  transfer
learning  to  classify  CXR  images  into  four  classes:  normal,
bacterial  infection,  infection  non-COVID,  and  COVID-19
virus.  Another  study  [36]  adopts  a  DeTraC  deep  CNN
architecture  [37]  where  the  general  idea  is  to  add  a  class
decomposition layer to the preformed models. In the proposed
module, the class decomposition layer, aims to partition each
class of the image dataset into several sub-classes. New labels
are  then  assigned  to  the  new  set,  where  each  subset  is
considered an independent class. After that, these subsets are
assembled to produce the final predictions.

The  performance  described  in  the  previous  paragraph  of
COVID-19 classification can be resumed by using the transfer
learning  that  provides  an  effective  solution  with  the  limited
availability  of  annotated  images  by  transferring  knowledge
from  pre-trained  CNN  to  the  specific  medical  imaging  task.
State  of  the  art  described  approaches  had  shown  very  high
efficiency for the classification of COVID-19 infected patients
by comparing  the  performance  measures  presented  in  all  the
models.  The  model  gets  accuracy  and  sensitivity  values  of
around 98%, while  it  is  between 91% and 95% for  the other
presented  models  [37].  For  precision  criteria,  the  values  are
quite similar and are approximately 94%. On the other hand,
the authors in the study [35] showed a positive predictive value
between  91%  and  93%  for  the  non-covid  and  normal  class
while around 88% for the covid class.

Despite  the  efficiency and the  performances  obtained by
the  various  techniques  described  above  for  the  detection  of
COVID-19,  these  approaches  do  not  account  for  temporal
correlations and only provide a decision about a single image.
Prognosis  remains,  therefore,  an  open  issue.  Indeed,  once  a
patient is declared infected, especially for those taken in charge
in hospitals, it is important to monitor the evolution of the PP.

This  monitoring  can  allow  doctors  to  analyze  survival
probability  for  severe  cases,  and  hence  classify  them into  at
least two classes: i) potential positive response to treatment and

ii)  no  expected  positive  evolution.  For  hospitals  with  low
capacity or suffering from a lack of specific equipment, giving
priority to the first class based on prognosis tools is definitely
better  than  doing  it  randomly.  In  this  paper,  we  propose  a
method to analyse time series of lung images related to infected
patients in order to derive a prognosis whether the pathological
state is getting better or not.

Recurrent  neural  networks  (RNN)  are  a  family  of  deep
learning  methods  designed  to  manage  temporal  correlations
between images in time series. These networks have recurrent
connections, i.e., the output from the previous steps are fed as
input to the current step, in the sense that they keep information
in memory: they can take into account at time Tn a number of
past states Ti where i < n. These networks have been used in
remote sensing to assess change detection in multi-spectral and
hyper-spectral  images  [38].  RNNs  are  able  to  memorize
information for a limited time. The major problem is that they
start  to  “forget”  after  a  certain  number  of  iterations,  which
complicates the training for many applications. The algorithms
used for updating the weight in RNNs are mainly based on the
gradient  with  some  well  known  practical  problems  such  as
gradient  explosion.  To  overcome  this  limitation,  Long-Term
Short-Term Memory (LSTM) has been proposed as a particular
type  of  RNN  [39  -  41].  These  models  explicitly  capture
recursive temporal correlations, and they have already proven
their effectiveness in various fields, such as speech recognition
[42], natural language processing [43] and image completion
[44].  LSTMs  have  recently  been  used  in  medical  imaging,
where the authors propose a method with multi-modality and
adjacency  constraints  for  the  segmentation  of  the  cerebral
image  [45].

Finally,  it  is  worth  noting  that  LSTMs  and  CNNs  have
been combined in a number of works like [46 - 48].

4. METHODOLOGY

4.1. General Overview

The  proposed  methodology  consists  of  applying  a  deep
learning architecture for the multi-temporal classification of X-
ray images in order to evaluate the COVID-19 evolution, and
hence  draw  a  vital  prognosis  for  infected  patients.  The
proposed  methodology  is  based  on  the  combination  of  CNN
and RNN architectures. The CNN acts like a trainable feature
detector for the spatial signal. It learns powerful convolutional
features,  which  operate  on  the  spatial  input  image  while  the
RNN receives a sequence of such high-level representations in
order to assess the temporal evolution of images. The proposed
architecture  hence  classifies  the  time  series  into  two  main
classes: positive and negative evolution. Such a classification
can help doctors guess a vital prognosis for patients in critical
situations.

Our architecture is capable of automatically learn temporal
correlations  of  images  provided  as  input.  Fig.  (1)  gives  a
general  overview  of  the  proposed  ProgNet  architecture.

For an X-ray sequence T = (T1, T2, . . ., Tn), each image Ti

1 https://github.com/ieee8023/covid-chestxray-dataset/

https://github.com/ieee8023/covid-chestxray-dataset/


14   The Open Medical Imaging Journal, 2020, Volume 12 Fakhfakh et al.

goes through a CNN in order to extract a characteristic vector.
The obtained vector involves a set of information subsequently
generated  by  applying  several  convolutions  followed  by
pooling layers. As a specific configuration, ResNet50 is one of
the potential candidates to be used as a CNN, which has shown
its efficiency in different image classification applications.

An  RNN  is  then  applied  to  learn  temporal  correlations
between  the  different  characteristic  vectors  related  to  each
image  of  a  sequence  T.  LSTM  is  used  due  to  its  good
performance demonstrated in the literature [38 - 40]. Four fully
connected  layers  with  a  sigmoid  decision  function  are  then
applied to perform binary classification. A detailed description
of the adopted networks is provided in Section IV-B.

4.2. Used Networks
1) ResNet:  Residual networks (ResNet) is a classic CNN

used  as  a  backbone  for  many  computer  vision  tasks.  This
model won the ImageNet challenge in 2015. In deep networks,

low,  medium,  and  high  functionality  and  classifiers  are
extracted  into  a  set  of  layers.  ResNet  mainly  solves  two key
problems generally faced in the training deep neural networks:
vanishing and exploding gradients. The core idea of ResNet is
to introduce the “identity shortcut connection” which skips one
or more layers. Fig. (2) [left] illustrates plain layers where each
convolution is connected to each other, which is the idea of all
architectures  before  the  appearance  of  ResNet,  while  Fig.
(2)[right]  shows  the  residual  network  (Skip  connection).
Skipping  layers  allows  avoiding  gradient  to  vanish  during
back-propagation.  Using  such  connections,  one  can  train
extremely deep networks that can take advantage of the power
of depth, and hence allow capturing complex patterns in data.

As  illustrated  in  Fig.  (3),  the  ResNet50 [30]  architecture
used in this study is made up of 5 blocks, where each of them
contains a set of convolution and max-pooling layers, followed
by a skip connection.

Fig. (1). Overview of the proposed ProgNet architecture.

Fig. (2). Plain layers (left) and Residual blocks with skip connection (right).
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Fig. (3). Summarized overview of the ResNet50 architecture.

(1)  LSTM:  In  some  cases,  it  is  important  to  know  what
decisions  have  been  made  in  the  past  in  order  to  make  an
optimal and precise decision at time t. LSTMs are adopted here
given his capability to learn the long-term dependence of time
series data and to solve the problem of gradient vanish on the
time axis. Mixing long and short-term dependencies in chest X-
ray  images  is  important  and  complementary  with  spatial
dependencies  analyzed  by  our  CNN.  LSTMs  have
sophisticated dynamics that allow them to easily “memorize”

information for an extended number of time-steps. The “long
term”  memory  is  stored  in  a  vector  of  memory  cells  {C1,
C2,...Cn  }.  Although  some  differences  exist  in  LSTM
architectures, all of them have explicit memory cells for storing
information for long periods of time. The basic functionalities
of LSTM are: decide to overwrite the memory cell, retrieve it,
or  keep  it  for  the  next  time  step.  A  typical  LSTM  cell  is
illustrated in Fig. (4).

Fig. (4). Detailed LSTM cell architecture.
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In  Fig.  (4),  the  cell  input  is  denoted  by  Xt  (input  data),
while ht−1 stands for the state hidden at the previous step, and
Ct−1 corresponds to the previous memory cell. The cell outputs
are the next hidden state ht and memory cell Ct.

LSTM  architecture  differs  from  the  standard  recurrent
neural networks by two major points at the level of the blocks
that constitute. First, the most crucial element is the state of the
cell,  which  contains  the  information  to  be  memorized  and
transmitted to  the  next  cells.  It  is  divided into  two parts,  the
long-term  states  Ct  and  short-term  ht.  Second,  three  control
gates along the state path (forget, input, and output gates) are
added to regulate and process the cell states.

The first step of an LSTM cell is to determine the amount
of  information  to  be  rejected  from  the  input  data  Xt  and  the
previous output ht−1. This decision is always made by a sigmoid
layer   called  “forget  gate  layer  (ft)”.  It
evaluates the quantities ht−1 and Xt in order to produce for each
cell state Ct−1 values between 0, i.e., ignore the value, and 1 to
keep it. Eq.(1) shows how to control the information removal
from the previous long-term state Ct−1:

(1)

where σ is the sigmoid function, Wf and bf corresponds to
the weight matrix and bias.

The  next  step,  input  gate,  is  to  generate  the  new
information,  which  must  be  memorized  in  the  cell  state  and
forward to the next state. To do this, we must proceed by two
steps: first, a layer sigmoid called ”input gate layer it” (Eq.(2))
decides  the  values  that  we  need  to  update.  Then,  a  tangent
hyperbolic layer  aims to create a vector of
new candidate values Ct  (Eq.(3)), which will be added to the
state.  These  elements  are  then  combined  to  create  a  state
update:

(2)

(3)

As in Eq. (1), Wi and Wc stand for weight matrices, while bi

and bc are the bias terms.

In  an  LSTM  cell,  the  old  cell  state  Ct−1  has  then  to  be
updated into the new cell state Ct following Eq.(4):

(4)

where “.” is the point-wise matrix multiplication.

The last step, output gate, to decide the final information
produced at the end of the cell. The output gate ot calculation is
based on the cell state following Eq. (5), while the hidden state
is updated according to Eq. (6):

(5)

(6)

In Equation (5), Wo and bo correspond to the weight matrix
and bias. The output of the block is recurrently connected back
to the block input and all of the gates.

5. EXPERIMENTAL VALIDATION

In  this  section,  we  illustrate  the  performance  of  the
proposed  architecture  for  COVID-19  prognosis.

Experiments  are  conducted  on  an  open  database  of
COVID-19 cases  with  chest  radiographs2.  To the  best  of  our
knowledge,  this  is  the  only  available  dataset  containing
temporal  acquisitions  for  a  number  of  patients,  with  ground
truth annotation as a therapeutic issue for each patient: death or
survival.  The  limited  number  of  available  data,  as  well  as
considering a single database, could introduce some bias that
we are not able to evaluate in this paper. This issue has already
been outlined in a number of recent studies [49]; some of them
are even linked to Covid-19 X-ray diagnosis [50].

The used database contains data for 42 patients, with up to
5  images  for  the  same  subject.  For  the  validation  of  the
proposed architecture, we used 34 sequences for training; each
includes 3 X-ray images of the same patient, and 8 sequences
for the test.

To implement our ProgNet architecture, we put four dense
layers, respectively, FC-1024, FC-500, FC-128, and FC-64. As
regards coding,  we used python programming language with
Keras  and  Tensorflow libraries  on  an  Intel(R)  Core(TM)  i7-
3630QM CPU 2.40GHZ architecture with 8 Go memory.

In order to assess the performance of the proposed ProgNet
architecture on the available data, we performed comparisons
with  three  other  possible  configurations.  Each  configuration
relies  on  a  different  CNN  (see  Fig.  1):  AlexNnet,  VGG16,
VG19. These networks have already demonstrated outstanding
performance in the literature.

5.1. Loss and Accuracy Behavior

We  first  assess  and  compare  the  training  and  validation
errors during the training procedure.

We used an ADAM optimization technique with a learning
rate of 10−4 and binary cross-entropy loss. The minimum batch
size was 32 and 60 epochs were considered. The weight decay
was  set  to  10−4  to  prevent  over-fitting  while  training  the
model.  The  momentum  value  was  set  to  0.9.  As  regards  the
depth  of  the  used  LSTM,  we  defined  150  hidden  units  and
added a dropout layer of 0.5.

Fig.  (5)  displays  the  obtained  train  accuracy  and  loss
curves for the proposed ProgNet (Fig. 5d) as well as the other
used  configurations:  AlexNnet  (Fig.  5d),  VGG16  (Fig.  5b),
VG19  (Fig.  5c).  The  displayed  curves  indicate  similar
convergence performance with the superiority of our approach.

2 https://github.com/ieee8023/covid-chestxray-dataset/

(𝜎(𝑥) =
1

1+𝑒−𝑥
)

ft = σ(Wf [ht−1, Xt] + bf ), 

 

(𝑡𝑎𝑛ℎ(𝑥) =
𝑒−𝑥−𝑒−𝑥

𝑒−𝑥+𝑒−𝑥
) 

 

it = σ(Wi[ht−1, Xt] + bi), 

𝐶𝑡 = tanh(Wc[ht−1, Xt] + bc).            

                    Ct = ft.Ct−1 + it.𝐶𝑡−1,

ot = σ(Wo[ht−1, Xt] + bo), 

ht = ot tanh Ct. 

https://github.com/ieee8023/covid-chestxray-dataset/
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Fig. (5). Accuracy/Loss of the learning train obtained with (a) AlexNet, (b) VGG16, (c) VGG19 and (d) ProgNet.

Fig. (6). Accuracy/Loss of the learning test curves obtained with (a) AlexNet, (b) VGG16, (c) VGG19 and (d) ProgNet.

As regards the test set, Fig. (6) displays accuracy and loss
curves for all architectures. When visually inspecting (Fig. 6d),
we see that the loss and accuracy curves get better faster for the
ProgNet  architecture  with  a  more  stable  behavior.  Training
with  the  ProgNet  architecture  is,  therefore,  faster  and  more
efficient than the other configurations, partly due to the CNN
depth.

It is worth noting that the observed peaks in the accuracy
and loss curves may be caused by a lack of representatives of
the training and test data, and hence difficulty in learning some
fine  features.  This  deserves  more  investigation  to  assess  the

ability of the model to generalize [51, 52]. This is mainly due
to the limited number of available time-series of X-ray chest
images related to Covid-19.

5.2. Quantitative Evaluation

To further assess the performance of the proposed method,
Table 1 reports obtained values for the rates of True Positives
(TP),  True  Negatives  (TN),  False  Positives  (FP)  and  False
Negatives  (FN).  As  reported  in  Table  1,  all  the  networks
perform well with TP rates over 87%. However, the proposed
ProgNet architecture slightly outperforms the others with the
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highest TP and TN rates, while the FN and FP rates are also the
lowest. By enjoying the lowest FN, the proposed architecture
appears very interesting since, for such a prognosis, it is crucial
to not miss negative evolution cases.

To further assess the quantitative performance, accuracy,
precision and recall are also provided in Table 2, in addition to
the F1  score [53].  The F1  score takes into consideration both
precision and recall in order to validate the accuracy. It is the
harmonic mean of both measures and can be calculated as

(7)

In Table 2, the mean values over 10 runs are provided. For
each  run,  a  subset  of  training  data  is  randomly  chosen.
Standard deviations over the 10 runs are also provided in the
table.

Through the reported values, one can easily notice that the
proposed  ProgNet  method  outperforms  the  other  competing
architectures.  Specifically,  higher precision and recall  values
indicate that ProgNet is more efficient in retrieving ambiguous
infection cases. Moreover, the reported low standard variation
values show better stability for the proposed model, indicating
better  generalization  properties.  A  visual  inspection  of
ambiguous  time-series  is  provided  in  Section  V-C.

5.3. Qualitative Analysis

In  this  section,  we  illustrate  some  representative  results
obtained on a group of patients. These time series are made up
of 3 images acquired at times T1,  T2  and T3.  Fig. (7) displays
four-time series of Covid-19 patients, two of them (top) have
survived,  while  the  two  others  (bottom)  are  dead.  For  each
patient,  the obtained “survival score” (SS) is  provided in the
first column. This score is nothing but the probability predicted
by the sigmoid function.

Table 1. TP, FN, FP and TN values for the proposed ProNet method and AlexNet, VGG16, VGG19 architectures.

TP FN FP TN
AlexNet 89.54% 10.83% 10.46% 89.17%
VGG16 91.20% 8.15% 8.8% 91.85%
VGG19 92.01% 7.09% 7.99% 92.91%
ProNet 95.41% 5.23% 4.59% 94.77%

Fig. (7). Visualization of the COVID-19 classification using the propose ProgNet architecture.

Table  2.  Mean accuracy,  precision,  recall  and f1score  for  the  proposed prognet  architecture  as  well  as  alexnet,  VGG16,
VGG19.

AlexNet VGG16 VGG19 ProgNet
Accuracy 0.893

±0.07
0.915
±0.03

0.924
±0.04

0.950
±0.03

Precision 0.820
±0.08

0.912
±0.02

0.920
±0.03

0.954
±0.02

𝐹1 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
                 

          SS              T1           T2        T3 

 

  

 

7.25 % 

92.8 % 

95.7 % 

8.3 % 
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AlexNet VGG16 VGG19 ProgNet
Recall 0.818

±0.09
0.917
±0.05

0.928
±0.06

0.948
±0.04

F1
score

0.818
±0.06

0.914
±0.03

0.923
±0.04

0.950
±0.02

Fig. (8). Examples of time-series well classified by ProgNet for which the competing methods fail.

Fig. (9). Images of an ambiguous time-series mis-classified by ProgNet.

From a visual point of view, it is clear that time-series with
death issues show more white areas over all images. Generally
speaking,  the  spread  of  these  areas  increases  over  time.
Reported  SC values  indicate  how sure  the  ProgNet  model  is
about the classification results for these time-series.

As  reported  in  the  previous  section,  good  precision  and
recall values indicate the ability of our ProgNet architecture to
properly classify ambiguous cases. In this sense, Fig. (8) shows
two examples of time-series corresponding to two patients with
survival and death issues. These patients are well classified by
the  proposed  ProgNet  architecture,  while  the  competing
methods  misclassify  them.  When  visually  inspecting  the
images  for  the  death  issue,  ambiguity  comes  from  extended
white areas in all the images with no visible improvement over
time. The same remark holds for the survival case where white

areas persist over time.

To investigate why the proposed ProgNet architecture fails
to classify some cases, Fig. (9) shows images of a time-series
linked  to  a  patient  mis-classified  by  ProgNet.  Indeed,  we
notice, in some cases, an unexpected change in the situation of
a patient during the last image of the sequence. This can lead to
some problems in learning all features and managing the time
correlation  between  them.  Analysing  longer  sequences  can
certainly  improve  model  performance.

6. RESULTS AND DISCUSSION

Using deep learning to analyse temporal series is today an
open  research  field  in  many  applications  such  as  medical
imaging [54].  Specifically,  LSTMs are efficient  and scalable

       T1        T2                     T3 

Survival 

Death 

       T1                 T2                  T3 

 

(Table 2) contd.....
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models for several learning problems related to sequential data.
It  has  been  used  for  a  long  time  in  many  fields  [55].  In  this
paper,  we  have  shown  how  to  combine  CNN  and  LSTM
framework for temporal classification of COVID-19 evolution.
Behind this technical combination, the application to prognosis
in Covid-19 evolution has a great potential for any healthcare
system. The proposed solution has been validated using chest
radiography data. The main goal is to assist doctors to save a
maximum  number  of  COVID-19  infected  patients.  Indeed,
since many healthcare systems are being saturated because of
the exponential growth of Covid-19 infections, using AI to help
deciding  which  patients  have  more  chance  to  recover,  is  of
great  interest  in  the  unfortunate  case  where  no  enough
equipments are available to offer intensive cares to all patients
[56].

We designed a model that is able to handle temporal series
while  involving  different  CNN  and  RNN  architectures.  The
retained  architecture,  called  ProgNet,  is  the  one  that
outperforms all the other combinations using the most efficient
CNNs of the literature, such as AlexNet, VGG16, and VG19. A
CNN architecture  using  Resnet  with  50  convolutional  layers
has  been retained.  Fig.  (5)  and Fig.  (6)  show that  our  model
achieved good temporal classification accuracies. This may be
explained by the fact that using deeper layers helps extracting
more implicit features and avoids the overfitting problem [57].
As  shown  in  the  results  section,  quantitative  and  qualitative
results  of  the  proposed  ProgNet  architecture  are  promising.
Specifically,  the  good  convergence,  precision  and  stability
properties have to be confirmed on larger datasets. This may
help assessing how robust the proposed method is with respect
to constructor and acquisition conditions variabilities [58].

As  with  most  Deep  Learning-based  approaches,  large
training datasets are essential [59]. This is the main limitation
of the proposed method. As regards performances, some miss-
classifications  may  be  avoided  by  revising  the  LSTM
architecture,  especially  the  feature  selection  procedure  using
the forget  gate.  We expect  a  higher  impact  of  improving the
LSTM  architecture  for  long  time  series.  Indeed,  since  our
approach  performs  both  spatial  and  temporal  analysis  of
images, experiments and processed data (Figs. 7, 8 and 9) show
that the temporal analysis plays a more important role due to
high similarity levels between spatial images.

CONCLUSION

In  this  paper,  we  proposed  an  architecture  for  Covid-19
prognosis,  based  on  a  combination  of  CNN  and  RNN
networks. The proposed architecture analyses both spatial and
temporal dependencies in the input time-series of chest X-ray
images.  Our  method  is  segmentation-free,  making  it
competitive with respect to other assessment methods relying
on  time-consuming  lung  segmentation  algorithms.  When
applied to radiographic data, the proposed ProgNet architecture
showed  promising  results  with  good  classification
performances, especially for ambiguous cases. Specifically, the
reported low false-positive rates of 4.59% (50% lower than the
other  approaches)  are  promising  for  an  accurate  and
personalized  care  workflow.

Future  work  will  focus  on  applying  the  proposed

architecture to CT data with longer time-series. However, data
availability and homogeneity is a key issue. In this sense, the
proposed architecture has to be adapted in order to handle data
heterogeneity in time (time-series with different sizes). Future
work  will  also  consider  validating  the  proposed  method  on
other  types  of  pneumonia  to  investigate  its  efficiency  in  the
prognosis of the pathology evolution.
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